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0.1 Introduction

This book represents course notes for a one semester course at the undergraduate
level giving an introduction to Riemannian geometry and its principal physical
application, Einstein’s theory of general relativity. The background assumed is
a good grounding in linear algebra and in advanced calculus, preferably in the
language of differential forms.

Chapter I introduces the various curvatures associated to a hypersurface
embedded in Euclidean space, motivated by the formula for the volume for
the region obtained by thickening the hypersurface on one side. If we thicken
the hypersurface by an amount h in the normal direction, this formula is a
polynomial in h whose coefficients are integrals over the hypersurface of local
expressions. These local expressions are elementary symmetric polynomials in
what are known as the principal curvatures. The precise definitions are given in
the text.The chapter culminates with Gauss’ Theorema egregium which asserts
that if we thicken a two dimensional surface evenly on both sides, then the these
integrands depend only on the intrinsic geometry of the surface, and not on how
the surface is embedded. We give two proofs of this important theorem. (We
give several more later in the book.) The first proof makes use of “normal coor-
dinates” which become so important in Riemannian geometry and, as “inertial
frames,” in general relativity. It was this theorem of Gauss, and particularly
the very notion of “intrinsic geometry”, which inspired Riemann to develop his
geometry.

Chapter II is a rapid review of the differential and integral calculus on man-
ifolds, including differential forms,the d operator, and Stokes’ theorem. Also
vector fields and Lie derivatives. At the end of the chapter are a series of sec-
tions in exercise form which lead to the notion of parallel transport of a vector
along a curve on a embedded surface as being associated with the “rolling of
the surface on a plane along the curve”.

Chapter III discusses the fundamental notions of linear connections and their
curvatures, and also Cartan’s method of calculating curvature using frame fields
and differential forms. We show that the geodesics on a Lie group equipped with
a bi-invariant metric are the translates of the one parameter subgroups. A short
exercise set at the end of the chapter uses the Cartan calculus to compute the
curvature of the Schwartzschild metric. A second exercise set computes some
geodesics in the Schwartzschild metric leading to two of the famous predictions
of general relativity: the advance of the perihelion of Mercury and the bending
of light by matter. Of course the theoretical basis of these computations, i.e.
the theory of general relativity, will come later, in Chapter VII.

Chapter IV begins by discussing the bundle of frames which is the modern
setting for Cartan’s calculus of “moving frames” and also the jumping off point
for the general theory of connections on principal bundles which lie at the base
of such modern physical theories as Yang-Mills fields. This chapter seems to
present the most difficulty conceptually for the student.

Chapter V discusses the general theory of connections on fiber bundles and
then specialize to principal and associated bundles.
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Chapter VI returns to Riemannian geometry and discusses Gauss’s lemma
which asserts that the radial geodesics emanating from a point are orthogo-
nal (in the Riemann metric) to the images under the exponential map of the
spheres in the tangent space centered at the origin. From this one concludes
that geodesics (defined as self parallel curves) locally minimize arc length in a
Riemann manifold.

Chapter VII is a rapid review of special relativity. It is assumed that the
students will have seen much of this material in a physics course.

Chapter VIII is the high point of the course from the theoretical point of
view. We discuss Einstein’s general theory of relativity from the point of view of
the Einstein-Hilbert functional. In fact we borrow the title of Hilbert’s paper for
the Chapter heading. We also introduce the principle of general covariance, first
introduce by Einstein, Infeld, and Hoffmann to derive the “geodesic principle”
and give a whole series of other applications of this principle.

Chapter IX discusses computational methods deriving from the notion of
a Riemannian submersion, introduced and developed by Robert Hermann and
perfected by Barrett O’Neill. It is the natural setting for the generalized Gauss-
Codazzi type equations. Although technically somewhat demanding at the be-
ginning, the range of applications justifies the effort in setting up the theory.
Applications range from curvature computations for homogeneous spaces to cos-
mogeny and eschatology in Friedman type models.

Chapter X discusses the Petrov classification, using complex geometry, of the
various types of solutions to the Einstein equations in four dimensions. This
classification led Kerr to his discovery of the rotating black hole solution which
is a topic for a course in its own. The exposition in this chapter follows joint
work with Kostant.

Chapter XI is in the form of a enlarged exercise set on the star operator. It
is essentially independent of the entire course, but I thought it useful to include,
as it would be of interest in any more advanced treatment of topics in the course.
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Chapter 1

The principal curvatures.

1.1 Volume of a thickened hypersurface

We want to consider the following problem: Let Y ⊂ Rn be an oriented hyper-
surface, so there is a well defined unit normal vector, ν(y), at each point of Y .
Let Yh denote the set of all points of the form

y + tν(y), 0 ≤ t ≤ h.

We wish to compute Vn(Yh) where Vn denotes the n−dimensional volume. We
will do this computation for small h, see the discussion after the examples.

Examples in three dimensional space.

1. Suppose that Y is a bounded region in a plane, of area A. Clearly

V3(Yh) = hA

in this case.

2. Suppose that Y is a right circular cylinder of radius r and height ` with
outwardly pointing normal. Then Yh is the region between the right circular
cylinders of height ` and radii r and r + h so

V3(Yh) = π`[(r + h)2 − r2]
= 2π`rh+ π`h2

= hA+ h2 · 1
2r
·A

= A

(
h+

1
2
· kh2

)
,

where A = 2πr` is the area of the cylinder and where k = 1/r is the curvature of
the generating circle of the cylinder. For small h, this formula is correct, in fact,

11
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whether we choose the normal vector to point out of the cylinder or into the
cylinder. Of course, in the inward pointing case, the curvature has the opposite
sign, k = −1/r.

For inward pointing normals, the formula breaks down when h > r, since we
get multiple coverage of points in space by points of the form y + tν(y).

3. Y is a sphere of radius R with outward normal, so Yh is a spherical shell,
and

V3(Yh) =
4
3
π[(R+ h)3 −R3]

= h4πR2 + h24πR+ h3 4
3
π

= hA+ h2 1
R
A+ h3 1

3R2
A

=
1
3
·A ·

[
3h+ 3

1
R
· h2 +

1
R2

h3

]
,

where A = 4πR2 is the area of the sphere.
Once again, for inward pointing normals we must change the sign of the

coefficient of h2 and the formula thus obtained is only correct for h ≤ 1
R .

So in general, we wish to make the assumption that h is such that the map

Y × [0, h] → Rn, (y, t) 7→ y + tν(y)

is injective. For Y compact, there always exists an h0 > 0 such that this
condition holds for all h < h0. This can be seen to be a consequence of the
implicit function theorem. But so not to interrupt the discussion, we will take
the injectivity of the map as an hypothesis, for the moment.

In a moment we will define the notion of the various averaged curvatures,
H1, . . . ,Hn−1, of a hypersurface, and find for the case of the sphere with outward
pointing normal, that

H1 =
1
R
, H2 =

1
R2

,

while for the case of the cylinder with outward pointing normal that

H1 =
1
2r
, H2 = 0,

and for the case of the planar region that

H1 = H2 = 0.

We can thus write all three of the above the above formulas as

V3(Yh) =
1
3
A
[
3h+ 3H1h

2 +H2h
3
]
.
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1.2 The Gauss map and the Weingarten map.

In order to state the general formula, we make the following definitions: Let
Y be an (immersed) oriented hypersurface. At each x ∈ Y there is a unique
(positive) unit normal vector, and hence a well defined Gauss map

ν : Y → Sn−1

assigning to each point x ∈ Y its unit normal vector, ν(x). Here Sn−1 denotes
the unit sphere, the set of all unit vectors in Rn.

The normal vector, ν(x) is orthogonal to the tangent space to Y at x. We
will denote this tangent space by TYx. For our present purposes, we can regard
TYx as a subspace of Rn: If t 7→ γ(t) is a differentiable curve lying on the
hypersurface Y , (this means that γ(t) ∈ Y for all t) and if γ(0) = x, then γ′(0)
belongs to the tangent space TYx. Conversely, given any vector v ∈ TYx, we
can always find a differentiable curve γ with γ(0) = x, γ′(0) = v. So a good
way to think of a tangent vector to Y at x is as an “infinitesimal curve” on Y
passing through x.

Examples:

1. Suppose that Y is a portion of an (n− 1) dimensional linear or affine sub-
space space sitting in Rn. For example suppose that Y = Rn−1 consisting
of those points in Rn whose last coordinate vanishes. Then the tangent
space to Y at every point is just this same subspace, and hence the normal
vector is a constant. The Gauss map is thus a constant, mapping all of Y
onto a single point in Sn−1.

2. Suppose that Y is the sphere of radius R (say centered at the origin). The
Gauss map carries every point of Y into the corresponding (parallel) point
of Sn−1. In other words, it is multiplication by 1/R:

ν(y) =
1
R
y.

3. Suppose that Y is a right circular cylinder in R3 whose base is the circle
of radius r in the x1, x2 plane. Then the Gauss map sends Y onto the
equator of the unit sphere, S2, sending a point x into (1/r)π(x) where
π : R3 → R2 is projection onto the x1, x2 plane.

Another good way to think of the tangent space is in terms of a local
parameterization which means that we are given a map X : M 7→ Rn where
M is some open subset of Rn−1 and such that X(M) is some neighborhood of
x in Y . Let y1, . . . , yn−1 be the standard coordinates on Rn−1. Part of the
requirement that goes into the definition of parameterization is that the map X
be regular, in the sense that its Jacobian matrix

dX :=
(
∂X

∂y1
, · · · , ∂X

∂yn−1

)
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whose columns are the partial derivatives of the map X has rank n − 1 every-
where. The matrix dX has n rows and n− 1 columns. The regularity condition
amounts to the assertion that for each z ∈M the vectors,

∂X

∂y1
(z), · · · , ∂X

∂yn−1
(z)

span a subspace of dimension n− 1. If x = X(y) then the tangent space TYx is
precisely the space spanned by

∂X

∂y1
(y), · · · , ∂X

∂yn−1
(y).

Suppose that F is a differentiable map from Y to Rm. We can then define
its differential, dFx : TYx 7→ Rm. It is a linear map assigning to each v ∈ TYx

a value dFx(v) ∈ Rm: In terms of the “infinitesimal curve” description, if
v = γ′(0) then

dFx(v) =
dF ◦ γ
dt

(0).

(You must check that this does not depend on the choice of representing curve,
γ.)

Alternatively, to give a linear map, it is enough to give its value at the
elements of a basis. In terms of the basis coming from a parameterization, we
have

dFx

(
∂X

∂yi
(y)
)

=
∂F ◦X
∂yi

(y).

Here F ◦X : M → Rm is the composition of the map F with the map X. You
must check that the map dFx so determined does not depend on the choice of
parameterization. Both of these verifications proceed by the chain rule.

One immediate consequence of either characterization is the following im-
portant property. Suppose that F takes values in a submanifold Z ⊂ Rm.
Then

dFx : TYx → TZF (x).

Let us apply all this to the Gauss map, ν, which maps Y to the unit sphere,
Sn−1. Then

dνx : TYx → TSn−1
ν(x) .

But the tangent space to the unit sphere at ν(x) consists of all vectors
perpendicular to ν(x) and so can be identified with TYx. We define the Wein-
garten map to be the differential of the Gauss map, regarded as a map from
TYx to itself:

Wx := dνx, Wx : TYx → TYx.

The second fundamental form is defined to be the bilinear form on TYx

given by
IIx(v, w) := (Wxv, w).
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In the next section we will show, using local coordinates, that this form is
symmetric, i.e. that

(Wxu, v) = (u,Wxv).

This implies, from linear algebra, that Wx is diagonizable with real eigenvalues.
These eigenvalues, k1 = k1(x), · · · , kn−1 = kn−1(x), of the Weingarten map are
called the principal curvatures of Y at the point x.

Examples:

1. For a portion of (n − 1) space sitting in Rn the Gauss map is constant
so its differential is zero. Hence the Weingarten map and thus all the
principal curvatures are zero.

2. For the sphere of radius R the Gauss map consists of multiplication by 1/R
which is a linear transformation. The differential of a linear transformation
is that same transformation (regarded as acting on the tangent spaces).
Hence the Weingarten map is 1/R×id and so all the principal curvatures
are equal and are equal to 1/R.

3. For the cylinder, again the Gauss map is linear, and so the principal
curvatures are 0 and 1/r.

We let Hj denote the jth normalized elementary symmetric functions of the
principal curvatures. So

H0 = 1

H1 =
1

n− 1
(k1 + · · ·+ kn−1)

Hn−1 = k1 · k2 · · · kn−1

and, in general,

Hj =
(
n− 1
j

)−1 ∑
1≤i1<···<ij≤n−1

ki1 · · · kij
. (1.1)

H1 is called the mean curvature andHn−1 is called the Gaussian curvature.
All the principal curvatures are functions of the point x ∈ Y . For notational
simplicity, we will frequently suppress the dependence on x. Then the formula
for the volume of the thickened hypersurface (we will call this the “volume
formula” for short) is:

Vn(Yh) =
1
n

n∑
i=1

(
n
i

)
hi

∫
Y

Hi−1d
n−1A (1.2)

where dn−1A denotes the (n− 1 dimensional) volume (area) measure on Y .
A immediate check shows that this gives the answers that we got above for

the the plane, the cylinder, and the sphere.



16 CHAPTER 1. THE PRINCIPAL CURVATURES.

1.3 Proof of the volume formula.

We recall that the Gauss map, ν assigns to each point x ∈ Y its unit normal
vector, and so is a map from Y to the unit sphere, Sn−1. The Weingarten map,
Wx, is the differential of the Gauss map, Wx = dνx, regarded as a map of the
tangent space, TYx to itself. We now describe these maps in terms of a local
parameterization of Y . So let X : M → Rn be a parameterization of class
C2 of a neighborhood of Y near x, where M is an open subset of Rn−1. So
x = X(y), y ∈M , say. Let

N := ν ◦X

so that N : M → Sn−1 is a map of class C1. The map

dXy : Rn−1 → TYx

gives a frame of TYx. The word “frame” means an isomorphism of our “stan-
dard” (n−1)-dimensional space, Rn−1 with our given (n−1)-dimensional space,
TYx. Here we have identified T (Rn−1)y with Rn−1, so the frame dXy gives us
a particular isomorphism of Rn−1 with TYx.

Giving a frame of a vector space is the same as giving a basis of that vector
space. We will use these two different ways of using the word“ frame” inter-
changeably. Let e1, . . . , en−1 denote the standard basis of Rn−1, and for X
and N , let the subscript i denote the partial derivative with respect to the ith
Cartesian coordinate. Thus

dXy(ei) = Xi(y)

for example, and so X1(y), . . . , Xn−1(y) “is” the frame determined by dXy

(when we regard TYx as a subspace of Rn). For the sake of notational sim-
plicity we will drop the argument y. Thus we have

dX(ei) = Xi,

dN(ei) = Ni,

and so
WxXi = Ni.

Recall the definition, IIx(v, w) = (Wxv, w), of the second fundamental form.
Let (Lij) denote the matrix of the second fundamental form with respect to the
basis X1, . . . Xn−1 of TYx. So

Lij = IIx(Xi, Xj)
= (WxXi, Xj)
= (Ni, Xj)

so

Lij = −(N,
∂2X

∂yi∂yj
), (1.3)
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the last equality coming from differentiating the identity

(N,Xj) ≡ 0

in the ith direction. In particular, it follows from (1.3) and the equality of cross
derivatives that

(WxXi, Xj) = (Xi,WxXj)

and hence, by linearity that

(Wxu, v) = (u,Wxv) ∀u, v ∈ TYx.

We have proved that the second fundamental form is symmetric, and hence the
Weingarten map is diagonizable with real eigenvalues.

Recall that the principal curvatures are, by definition, the eigenvalues of the
Weingarten map. We will let

W = (Wij)

denote the matrix of the Weingarten map with respect to the basisX1, . . . , Xn−1.
Explicitly,

Ni =
∑

j

WjiXj .

If we write N1, . . . , Nn−1, X1, . . . , Xn−1 as column vectors of length n, we can
write the preceding equation as the matrix equation

(N1, . . . , Nn−1) = (X1, . . . , Xn−1)W. (1.4)

The matrix multiplication on the right is that of an n× (n− 1) matrix with an
(n− 1)× (n− 1) matrix. To understand this abbreviated notation, let us write
it out in the case n = 3, so that X1, X2, N1, N2 are vectors in R3:

X1 =

 X11

X12

X13

 , X2 =

 X21

X22

X23

 , N1 =

 N11

N12

N13

 , N2 =

 N21

N22

N23

 .

Then (1.4) is the matrix equation N11 N21

N12 N22

N13 N23

 =

 X11 X21

X12 X22

X13 X23

( W11 W12

W21 W22

)
.

Matrix multiplication shows that this gives

N1 = W11X1 +W21X2, N2 = W12X1 +W22X2,

and more generally that (1.4) gives Ni =
∑

j WjiXj in all dimensions.
Now consider the region Yh, the thickened hypersurface, introduced in the

preceding section except that we replace the full hypersurface Y by the portion
X(M). Thus the region in space that we are considering is

{X(y) + λN(y), y ∈M , 0 < λ ≤ h}.
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It is the image of the region M × (0, h] ⊂ Rn−1 ×R under the map

(y, λ) 7→ X(y) + λN(y).

We are assuming that this map is injective. By (1.4), it has Jacobian matrix
(differential)

J = (X1 + λN1, . . . , Xn−1 + λNn−1, N) =

(X1, . . . , Xn−1, N)
(

(In−1 + λW ) 0
0 1

)
. (1.5)

The right hand side of (1.5) is now the product of two n by n matrices.
The change of variables formula in several variables says that

Vn(h) =
∫

M

∫ h

0

|det J |dhdy1 · · · dyn−1. (1.6)

Let us take the determinant of the right hand side of (1.5). The determinant
of the matrix (X1, . . . , Xn−1, N) is just the (oriented) n dimensional volume of
the parallelepiped spanned by X1, . . . , Xn−1, N . Since N is of unit length and
is perpendicular to the X ′s, this is the same as the (oriented) n− 1 dimensional
volume of the parallelepiped spanned by X1, . . . , Xn−1. Thus, “by definition”,

|det (X1, . . . , Xn−1, N) |dy1 · · · dyn−1 = dn−1A. (1.7)

(We will come back shortly to discuss why this is the right definition.) The
second factor on the right hand side of (1.5) contributes

det(1 + λW ) = (1 + λk1) · · · (1 + λkn−1).

For sufficiently small λ, this expression is positive, so we need not worry about
the absolute value sign if h small enough. Integrating with respect to λ from 0
to h gives (1.2).

We proved (1.2) if we define dn−1A to be given by (1.7). But then it follows
from (1.2) that

d

dh
Vn(Yh)|h=0 =

∫
Y

dn−1A. (1.8)

A moment’s thought shows that the left hand side of (1.8) is exactly what we
want to mean by “area”: it is the “volume of an infinitesimally thickened region”.
This justifies taking (1.7) as a definition. Furthermore, although the definition
(1.7) is only valid in a coordinate neighborhood, and seems to depend on the
choice of local coordinates, equation (1.8) shows that it is independent of the
local description by coordinates, and hence is a well defined object on Y . The
functions Hj have been defined independent of any choice of local coordinates.
Hence (1.2) works globally: To compute the right hand side of (1.2) we may
have to break Y up into patches, and do the integration in each patch, summing
the pieces. But we know in advance that the final answer is independent of how
we break Y up or which local coordinates we use.
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1.4 Gauss’s theorema egregium.

Suppose we consider the two sided region about the surface, that is

Vn(Y +
h ) + Vn(Y −

h )

corresponding to the two different choices of normals. When we replace ν(x) by
−ν(x) at each point, the Gauss map ν is replaced by −ν, and hence the Wein-
garten maps Wx are also replaced by their negatives. The principal curvatures
change sign. Hence, in the above sum the coefficients of the even powers of h
cancel, since they are given in terms of products of the principal curvatures with
an odd number of factors. For n = 3 we are left with a sum of two terms, the
coefficient of h which is the area, and the coefficient of h3 which is the integral
of the Gaussian curvature. It was the remarkable discovery of Gauss that this
curvature depends only on the intrinsic geometry of the surface, and not on
how the surface is embedded into three space. Thus, for both the cylinder and
the plane the cubic terms vanish, because (locally) the cylinder is isometric to
the plane. We can wrap the plane around the cylinder without stretching or
tearing.

It was this fundamental observation of Gauss that led Riemann to investigate
the intrinsic metric geometry of higher dimensional space, eventually leading
to Einstein’s general relativity which derives the gravitational force from the
curvature of space time. A first objective will be to understand this major
theorem of Gauss.

An important generalization of Gauss’s result was proved by Hermann Weyl
in 1939. He showed: if Y is any k dimensional submanifold of n dimensional
space (so for k = 1, n = 3 Y is a curve in three space), let Y (h) denote the
“tube” around Y of radius h, the set of all points at distance h from Y . Then,
for small h, Vn(Y (h)) is a polynomial in h whose coefficients are integrals over
Y of intrinsic expressions, depending only on the notion of distance within Y .

Let us multiply both sides of (1.4) on the left by the matrix (X1, . . . , Xn−1)T

to obtain
L = QW

where Lij = (Xi, Nj) as before, and

Q = (Qij) := (Xi, Xj)

is called the matrix of the first fundamental form relative to our choice of
local coordinates. All three matrices in this equality are of size (n−1)× (n−1).
If we take the determinant of the equation L = QW we obtain

detW =
detL
detQ

, (1.9)

an expression for the determinant of the Weingarten map (a geometrical prop-
erty of the embedded surface) as the quotient of two local expressions. For the
case n − 1 = 2, we thus obtain a local expression for the Gaussian curvature,
K = detW .
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The first fundamental form encodes the intrinsic geometry of the hypersur-
face in terms of local coordinates: it gives the Euclidean geometry of the tangent
space in terms of the basis X1, . . . , Xn−1. If we describe a curve t 7→ γ(t) on
the surface in terms of the coordinates y1, . . . , yn−1 by giving the functions
t 7→ yj(t),  = 1, . . . , n− 1 then the chain rule says that

γ′(t) =
n−1∑
j=1

Xj(y(t))
dyj

dt
(t)

where
y(t) = (y1(t), . . . , yn−1(t)).

Therefore the (Euclidean) square length of the tangent vector γ′(t) is

‖γ′(t)‖2 =
n−1∑
i,j=1

Qij(y(t))
dyi

dt
(t)
dyj

dt
(t).

Thus the length of the curve γ given by∫
‖γ′(t)‖dt

can be computed in terms of y(t) as

∫ √√√√ n−1∑
i,j=1

Qij(y(t))
dyi

dt
(t)
dyj

dt
(t) dt

(so long as the curve lies within the coordinate system).
So two hypersurfaces have the same local intrinsic geometry if they have the

same Q in any local coordinate system.
In order to conform with a (somewhat variable) classical literature, we shall

make some slight changes in our notation for the case of surfaces in three di-
mensional space. We will denote our local coordinates by u, v instead of y1, y2
and so Xu will replace X1 and Xv will replace X2, and we will denote the scalar
product of two vectors in three dimensional space by a · instead of ( , ). We
write

Q =
(
E F
F G

)
(1.10)

where
E := Xu ·Xu (1.11)
F := Xu ·Xv (1.12)
G := Xv ·Xv (1.13)
so

detQ = EG− F 2. (1.14)
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We can write the equations (1.11)-(1.13) as

Q = (Xu, Xv)†(Xu, Xv). (1.15)

Similarly, let us set

e := N ·Xuu (1.16)
f := N ·Xuv (1.17)
g := N ·Xvv (1.18)

so

L = −
(
e f
f g

)
(1.19)

and
detL = eg − f2.

Hence (1.9) specializes to

K =
eg − f2

EG− F 2
, (1.20)

an expression for the Gaussian curvature in local coordinates. We can make
this expression even more explicit, using the notion of vector product. Notice
that the unit normal vector, N is given by

N =
1

||Xu ×Xv||
Xu ×Xv

and
||Xu ×Xv|| =

√
||Xu||2||Xv||2 − (Xu ·Xv)2 =

√
EG− F 2.

Therefore

e = N ·Xuu

=
1√

EG− F 2
Xuu · (Xu ×Xv)

=
1√

EG− F 2
det(Xuu, Xu, Xv),

This last determinant, is the the determinant of the three by three matrix whose
columns are the vectors Xuu, Xu and Xv. Replacing the first column by Xuv

gives a corresponding expression for f , and replacing the first column by Xvv

gives the expression for g. Substituting into (1.20) gives

K =
det(Xuu, Xu, Xv) det(Xvv, Xu, Xv)− det(Xuv, Xu, Xv)2

[(Xu ·Xu)(Xv ·Xv)− (Xu ·Xv)2]2
. (1.21)

This expression is rather complicated for computation by hand, since it
involves all those determinants. However a symbolic manipulation program such
as maple or mathematica can handle it with ease. Here is the instruction for
mathematica, taken from a recent book by Gray (1993), in terms of a function
X[u,v] defined in mathematica:
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gcurvature[X ][u ,v ]:=Simplify[
(Det[D[X[uu,vv],uu,uu],D[X[uu,vv],uu],D[X[uu,vv],vv]]*
Det[D[X[uu,vv],vv,vv],D[X[uu,vv],uu],D[X[uu,vv],vv]]-
Det[D[X[uu,vv],uu,vv],D[X[uu,vv],uu],D[X[uu,vv],vv]]ˆ2)/
(D[X[uu,vv],uu].D[X[uu,vv],uu]*
D[X[uu,vv],vv].D[X[uu,vv],vv]-
D[X[uu,vv],uu].D[X[uu,vv],vv]ˆ2)ˆ2] /. uu->u,vv->v

We are now in a position to give two proofs, both correct but both somewhat
unsatisfactory of Gauss’s Theorema egregium which asserts that the Gaussian
curvature is an intrinsic property of the metrical character of the surface. How-
ever each proof does have its merits.

1.4.1 First proof, using inertial coordinates.

For the first proof, we analyze how the first fundamental form changes when
we change coordinates. Suppose we pass from local coordinates u, v to local
coordinates u′, v′ where u = u(u′, v′), v = v(u′, v′). Expressing X as a function
of u′, v′ and using the chain rule gives,

Xu′ =
∂u

∂u′
Xu +

∂v

∂u′
Xv

Xv′ =
∂u

∂v′
Xu +

∂u

∂v′
Xv or

(Xu′ , Xv′) = (Xu, Xv) J where

J :=
(

∂u
∂u′

∂u
∂v′

∂v
∂u′

∂v
∂v′

)
so
Q′ = (Xu′ , Xv′)

† (Xu′ , Xv′)
= J†QJ.

This gives the rule for change of variables of the first fundamental form from the
unprimed to the primed coordinate system, and is valid throughout the range
where the coordinates are defined. Here J is a matrix valued function of u′, v′.

Let us now concentrate attention on a single point, P . The first fundamental
form is a symmetric postive definite matrix. By linear algebra, we can always
find a matrix R such that R†Q(uP , vp)R = I, the two dimensional identity ma-
trix. Here (uP , vP ) are the coordinates describing P . With no loss of generality
we may assume that these coordinates are (0, 0). We can then make the lin-
ear change of variables whose J(0, 0) is R, and so find coordinates such that
Q(0, 0) = I in this coordinate system. But we can do better. We claim that we
can choose coordinates so that

Q(0) = I,
∂Q

∂u
(0, 0) =

∂Q

∂v
(0, 0) = 0. (1.22)
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Indeed, suppose we start with a coordinate system with Q(0) = I, and look for a
change of coordinates with J(0) = I, hoping to determine the second derivatives
so that (1.22) holds. Writing Q′ = J†QJ and using Leibniz’s formula for the
derivative of a product, the equations become

∂(J + J†)
∂u′

(0) = −∂Q
∂u

(0)
∂(J + J†)

∂v′
(0) = −∂Q

∂v
(0),

when we make use of J(0) = I. Writing out these equations gives(
2 ∂2u

(∂u′)2
∂2u

∂u′∂v′ + ∂2v
(∂u′)2

∂2u
∂u′∂v′ + ∂2v

(∂u′)2 2 ∂2v
∂u′∂v′

)
(0) = −∂Q

∂u
(0)

(
2 ∂2u

∂u′∂v′
∂2u

(∂v′)2 + ∂2v
∂u′∂v′

∂2u
(∂v′)2 + ∂2v

∂u′∂v′ 2 ∂2v
(∂v′)2

)
(0) = −∂Q

∂v
(0).

The lower right hand corner of the first equation and the upper left hand corner
of the second equation determine

∂2v

∂u′∂v′
(0) and

∂2u

∂u′∂v′
(0).

All of the remaining second derivatives are then determined (consistently since
Q is a symmetric matrix). We may now choose u and v as functions of u′, v′.
which vanish at (0, 0) together with all their first partial derivatives, and with
the second derivatives as above. For example, we can choose the u and v as
homogeneous polynomials in u′ and v′ with the above partial derivatives. A
coordinate system in which (1.22) holds (at a point P having coordinates (0, 0))
is called an inertial coordinate system based at P . Obviously the collection
of all inertial coordinate systems based at P is intrinsically associated to the
metric, since the definition depends only on properties of Q in the coordinate
system. We now claim the following

Proposition 1 If u, v is an inertial coordinate system of an embedded surface
based at P then then the Gaussian curvature is given by

K(P ) = Fuv −
1
2
Guu −

1
2
Evv (1.23)

the expression on the right being evaluated at (0, 0).

As the collection of inertial systems is intrinsic, and as (1.23) expresses the
curvature in terms of a local expression for the metric in an inertial coordinate
system, the proposition implies the Theorema egregium.

To prove the proposition, let us first make a rotation and translation in three
dimensional space (if necessary) so that X(P ) is at the origin and the tangent
plane to the surface at P is the x, y plane. The fact that Q(0) = I implies
that the vectors Xu(0), Xv(0) form an orthonormal basis of the x, y plane, so
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by a further rotation, if necessary, we may assume that Xu is the unit vector
in the positive x− direction and by replacing v by −v if necessary, that Xv is
the unit vector in the positive y direction. These Euclidean motions we used do
not change the value of the determinant of the Weingarten map and so have no
effect on the curvature. If we replace v by −v, E and G are unchanged and Guu

or Evv are also unchanged. Under the change v 7→ −v F goes to −F , but the
cross derivative Fuv picks up an additional minus sign. So Fuv is unchanged.

We have arranged that we need prove (1.23) under the assumptions that

X(u, v) =

 u+ r(u, v)
v + s(u, v)
f(u, v)

 ,

where r, s, and f are functions which vanish together with their first derivatives
at the origin in u, v space. So far we have only used the property Q(0) = I, not
the full strength of the definition of an inertial coordinate system. We claim
that if the coordinate system is inertial, all the second partials of r and s also
vanish at the origin. To see this, observe that

E = (1 + ru)2 + s2u + f2
u

F = rv + rurv + su + susv + fufv

G = r2v + (1 + sv)2 + f2
v so

Eu(0) = 2ruu(0)
Ev(0) = 2ruv(0)
Fu(0) = ruv(0) + suu(0)
Fv(0) = rvv(0) + suv(0)
Gu(0) = 2suv(0)
Gv(0) = 2svv(0).

The vanishing of all the first partials of E,F, and G at 0 thus implies the
vanishing of second partial derivatives of r and s.

By the way, turning this argument around gives us a geometrically intuitive
way of constructing inertial coordinates for an embedded surface: At any point
P choose orthonormal coordinates in the tangent plane to P and use them to
parameterize the surface. (In the preceding notation just choose x = u and
y = v as coordinates.)

Now N(0) is just the unit vector in the positive z− direction and so

e = fuu

f = fuv

g = fvv

so
K = fuufvv − f2

uv

(all the above meant as values at the origin) since EG − F 2 = 1 at the origin.
On the other hand, taking the partial derivatives of the above expressions for
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E,F and G and evaluating at the origin (in particular discarding terms which
vanish at the origin) gives

Fuv = ruvv + suuv + fuufvv + f2
uv

Evv = 2
[
ruvv + f2

uv

]
Guu = 2

[
suuv + f2

uv

]
when evaluated at (0, 0). So (1.23) holds by direct computation.

1.4.2 Second proof. The Brioschi formula.

Since the Gaussian curvature depends only on the metric, we should be able to
find a general formula expressing the Gaussian curvature in terms of a metric,
valid in any coordinate system, not just an inertial system. This we shall do by
massaging (1.21). The numerator in (1.21) is the difference of products of two
determinants. Now detB = detB† so detAdetB = detAB† and we can write
the numerator of (1.21) as

det

 Xuu ·Xvv Xuu ·Xu Xuu ·Xv

Xu ·Xvv Xu ·Xu Xu ·Xv

Xv ·Xvv Xv ·Xu Xv ·Xv

−det

 Xuv ·Xuv Xuv ·Xu Xuv ·Xv

Xu ·Xiv Xu ·Xu Xu ·Xv

Xv ·Xuv Xv ·Xu Xv ·Xv

 .

All the terms in these matrices except for the entries in the upper left hand
corner of each is either a term of the form E,F, or G or expressible as in
terms of derivatives of E,F and G. For example, Xuu · Xu = 1

2Eu and Fu =
Xuu ·Xv +Xu ·Xuv so Xuu ·Xv = Fu − 1

2Ev and so on. So if not for the terms
in the upper left hand corners, we would already have expressed the Gaussian
curvature in terms of E,F and G. So our problem is how to deal with the two
terms in the upper left hand corner. Notice that the lower right hand two by
two block in these two matrices are the same. So (expanding both matrices
along the top row, for example) the difference of the two determinants would be
unchanged if we replace the upper left hand term, Xuu ·Xvv in the first matrix
by Xuu ·Xvv −Xuv ·Xuv and the upper left hand term in the second matrix by
0. We now show how to express XuuXvv −Xuv ·Xuv in terms of E,F and G
and this will then give a proof of the Theorema egregium. We have

Xuu ·Xvv −Xuv ·Xuv = (Xu ·Xvv)u −Xu ·Xvvu

−(Xu ·Xuv)u +Xu ·Xuvv
= (Xu ·Xvv)u − (Xu ·Xuv)v

= ((Xu ·Xv)u −Xuv ·Xv)u −
1
2
(Xu ·Xu)vv

= (Xu ·Xv)vu− 1
2
(Xv ·Xv)uu −

1
2
(Xu ·Xu)vv

= −1
2
Evv + Fuv −

1
2
Guu.
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We thus obtain Brioschi’s formula

K =
detA− detB
(EG− F )2

where (1.24)

A =

 1
2Evv + Fuv − 1

2Guu
1
2Eu Fu − 1

2Ev

Fv − 1
2Gu E F

1
2Gv F G


B =

 0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

 .

Brioschi’s formula is not fit for human use but can be fed to machine if necessary.
It does give a proof of Gauss’ theorem. Notice that if we have coordinates
which are inertial at some point, P , then Brioschi’s formula reduces to (1.23)
since E = G = 1, F = 0 and all first partials vanish at P . We will reproduce
a mathematica program for Brioschi’s formula from Gray at the end of this
section.

In case we have orthogonal coordinates, a coordinate system in which
F ≡ 0, Brioschi’s formula simplifies and becomes useful: If we set F = Fu =
Fv = 0 in Brioschi’s formula and expand the determinants we get

1
(EG)2

[(
−1

2
Evv −

1
2
Guu

)
EG+

1
4
EuGuG+

1
4
EvGvE +

1
4
E2

vG+
1
4
G2

uE

]

=
[
−1

2
Evv

EG
+

1
4
E2

v

E2G
+

1
4
EvGv

EG2

]
+
[
−1

2
Guu

EG
+

1
4
G2

u

EG2
+

1
4
EuGu

E2G

]
.

We claim that the first bracketed expression can be written as

− 1√
EG

∂

∂v

(
1√
G

∂
√
E

∂v

)
.

Indeed,

1√
EG

∂

∂v

(
1√
G

∂
√
E

∂v

)
=

1√
EG

(
− Gv

2G
3
2

∂
√
E

∂v
+

1√
G

∂2
√
E

(∂v)2

)

=
1√
EG

(
− EvGv

4G
3
2
√
E

+
1

2
√
G

∂

∂v
(E 1

2Ev)
)

=
1√
EG

(
− EvGv

4G
3
2
√
E

+
1

2
√
G

[
− E2

v

2E
3
2

+
Evv√
E

])
= −GvEv

4G2E
− E2

v

4E2G
+

Evv

2EG
.

Doing a similar computation for the second bracketed term gives

K =
−1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
(1.25)
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as the expression for the Gaussian curvature in orthogonal coordinates. We
shall give a more direct proof of this formula and of Gauss’ theorema egregium
once we develop the Cartan calculus.

1.5 Problem set - Surfaces of revolution.

The simplest (non-trivial) case is when n = 2 - the study of a curve in the plane.
For the case of a curve X(t) = (x(t), y(t)) in the plane, we have

X ′(t) = (x′(t), y′(t)), N(t) = ± 1
(x′(t)2 + y′(t)2)1/2

(−y′(t), x′(t)),

where the ± reflects the two possible choices of normals. Equation (1.3) says
that the one by one matrix L is given by

L11 = −(N,X ′′) = ∓ 1
x′2 + y′2

(−y′x′′ + x′y′′).

The first fundamental form is the one by one matrix given by

Q11 = ‖X ′‖2.

So the curvature is
± 1

(x′2 + y′2)
3
2
(x′′y′ − y′′x′).

Verify that a straight line has curvature zero and that the curvature of a
circle of radius r is ±1/r with the plus sign when the normal points outward.

1. What does this formula reduce to in the case that x is used as a parameter,
i.e. x(t) = t, y = f(x)?

We want to study a surface in three space obtained by rotating a curve,
γ, in the x, z plane about the z−axis. Such a surface is called a surface of
revolution. Surfaces of revolution form one of simplest yet very important
classes of surfaces. The sphere, torus, paraboloid, ellipsoid with two equal axes
are all surfaces of revolution. Because of modes of production going back to
the potter’s wheel, the surfaces of many objects of daily life are surfaces of
revolution. We will find that the geometry of famous Schwarzschild black hole
can be considered as a particular analogue of a surface of revolution in four
dimensional space-time.

Let us temporarily assume that the curve γ is given by a function x = f(z) >
0 so that we can use z, θ as coordinates, where the surface is given by

X(z, θ) =

f(z) cos θ
f(z) sin θ

z

 ,
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and we choose the normal to point away from the z−axis.

2. Find ν(z, θ) and show that the Weingarten map is diagonal in the Xz, Xθ

basis, in fact

Nz = κXz, Nθ =
d

f
Xθ

where κ is the curvature of the curve γ and where d is the distance of the normal
vector, ν, from the z−axis. Therefore the Gaussian curvature is given by

K =
dκ

f
. (1.26)

Check that the Gaussian curvature of a cylinder vanishes and that of a sphere
of radius R is 1/R2.

Notice that (1.26) makes sense even if we can’t use z as a parameter every-
where on γ. Indeed, suppose that γ is a curve in the x, z plane that does not
intersect the z−axis, and we construct the corresponding surface of revolution.
At points where the tangent to γ is horizontal (parallel to the x−axis) the nor-
mal vector to the surface of revolution is vertical, so d = 0. Also the Gaussian
curvature vanishes, since the Gauss map takes the entire circle of revolution into
the north or south pole. So (1.26) is correct at these points. At all other points
we can use z as a parameter. But we must watch the sign of κ. Remember that
the Gaussian curvature of a surface does not depend on the choice of normal
vector, but the curvature of a curve in the plane does. In using (1.26) we must
be sure that the sign of κ is the one determined by the normal pointing away
from the z−axis.

3. For example, take γ to be a circle of radius r centered at a point at distance
D > r from the z−axis, say

x = D + r cosφ, z = r sinφ

in terms of an angular parameter, φ. The corresponding surface of revolution
is a torus. Notice that in using (1.26) we have to take κ as negative on the
semicircle closer to the z−axis. So the Gaussian curvature is negative on the
“inner” half of the torus and positive on the outer half. Using (1.26) and φ, θ
as coordinates on the torus, express K as a function on φ, θ. Also, express the
area element dA in terms of dφdθ. Without any computation, show that the
total integral of the curvature vanishes, i.e.

∫
T
KdA = 0.

Recall our definitions of E,F,and G given in equations (1.11)-(1.13). In the
classical literature, one write the first fundamental form as

ds2 = Edu2 + 2Fdudv +Gdv2.
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the meaning of this expression is as follows: let t 7→ (u(t), v(t)) describe the
curve

C : t 7→ X(u(t), v(t))

on the surface. Then ds gives the element of arc length of this curve if we
substitute u = u(t), v = v(t) into the expression for the first fundamental form.
So the first fundamental form describes the intrinsic metrical properties of the
surface in terms of the local coordinates. Recall equation (1.25) which says that
if u, v is an orthogonal coordinate system then the expression for the Gaussian
curvature is

K =
−1√
EG

[
∂

∂u

(
1√
E

∂
√
G

∂u

)
+

∂

∂v

(
1√
G

∂
√
E

∂v

)]
.

4. Show that the z, θ coordinates introduced in problem 2 for a surface of
revolution is an orthogonal coordinate system, find E and G and verify (??) for
this case.

A curve s 7→ C(s) on a surface is called a geodesic if its acceleration, C ′′,
is everywhere orthogonal to the surface. Notice that

d

ds
(C ′(s), C ′(s)) = 2(C ′′(s), C ′(s))

and this = 0 if C is a geodesic. The term geodesic refers to a parametrized curve
and the above equation shows that the condition to be a geodesic implies that
‖C ′(s)‖ is a constant; i.e that the curve is parametrized by a constant multiple
of arc length. If we use a different parameterization, say s = s(t) with dot
denoting derivative with respect to t, then the chain rule implies that

Ċ = C ′ṡ, C̈ = C ′′ṡ2 + C ′s̈.

So if use a parameter other than arc length, the projection of the acceleration
onto the surface is proportional to the tangent vector if C is a geodesic. In other
words, the acceleration is in the plane spanned by the tangent vector to the curve
and the normal vector to the surface. Conversely, suppose we start with a curve
C which has the property that its acceleration lies in the plane spanned by the
tangent vector to the curve and the normal vector to the surface at all points.
Let us reparametrize this curve by arc length. Then (C ′(s), C ′(s)) ≡ 1 and
hence (C ′′, C ′) ≡ 0. As we are assuming that C̈ lies in the plane spanned by Ċ
and the normal vector to the surface at each point of the curve, and that ṡ is
nowhere 0 we conclude that C, in its arc length parametrization is a geodesic.
Standard usage calls a curve which is a geodesic “up to reparametrization” a
pregeodesic. I don’t like this terminology but will live with it.

5. Show that the curves θ = const in the terminology of problem 2 are all
pregeodsics. Show that the curves z = const. are pregeodesics if and only if z
is a critical point of f , (i.e. f ′(s) = 0).
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The general setting for the concept of surfaces of revolution is that of a
Riemannian submersion, which will be the subject of Chapter 8.



Chapter 2

Rules of calculus.

2.1 Superalgebras.

A (commutative associative) superalgebra is a vector space

A = Aeven ⊕Aodd

with a given direct sum decomposition into even and odd pieces, and a map

A×A→ A

which is bilinear, satisfies the associative law for multiplication, and

Aeven ×Aeven → Aeven

Aeven ×Aodd → Aodd

Aodd ×Aeven → Aodd

Aodd ×Aodd → Aeven

ω · σ = σ · ω if either ω or σ are even,
ω · σ = −σ · ω if both ω and σ are odd.

We write these last two conditions as

ω · σ = (−1)degσdegωσ · ω.

Here deg τ = 0 if τ is even, and deg τ = 1 (mod 2) if τ is odd.

2.2 Differential forms.

A linear differential form on a manifold, M , is a rule which assigns to each
p ∈ M a linear function on TMp. So a linear differential form, ω, assigns to
each p an element of TM∗

p . We will, as usual, only consider linear differential
forms which are smooth.

31
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The superalgebra, Ω(M) is the superalgebra generated by smooth functions
on M (taken as even) and by the linear differential forms, taken as odd.

Multiplication of differential forms is usually denoted by ∧. The number of
differential factors is called the degree of the form. So functions have degree
zero, linear differential forms have degree one.

In terms of local coordinates, the most general linear differential form has
an expression as a1dx1 + · · ·+ andxn (where the ai are functions). Expressions
of the form

a12dx1 ∧ dx2 + a13dx1 ∧ dx3 + · · ·+ an−1,ndxn−1 ∧ dxn

have degree two (and are even). Notice that the multiplication rules require

dxi ∧ dxj = −dxj ∧ dxi

and, in particular, dxi ∧ dxi = 0. So the most general sum of products of two
linear differential forms is a differential form of degree two, and can be brought
to the above form, locally, after collections of coefficients. Similarly, the most
general differential form of degree k ≤ n in n dimensional manifold is a sum,
locally, with function coefficients, of expressions of the form

dxi1 ∧ · · · ∧ dxik
, i1 < · · · < ik.

There are
(
n
k

)
such expressions, and they are all even, if k is even, and odd

if k is odd.

2.3 The d operator.

There is a linear operator d acting on differential forms called exterior differ-
entiation, which is completely determined by the following rules: It satisfies
Leibniz’ rule in the “super” form

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ).

On functions it is given by

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn

and, finally,
d(dxi) = 0.

Since functions and the dxi generate, this determines d completely. For example,
on linear differential forms

ω = a1dx1 + · · · andxn
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we have

dω = da1 ∧ dx1 + · · ·+ dan ∧ dxn

=
(
∂a1

∂x1
dx1 + · · · ∂a1

∂xn
dxn

)
∧ dx1 + · · ·(

∂an

∂x1
dx1 + · · ·+ ∂an

∂xn
dxn

)
∧ dxn

=
(
∂a2

∂x1
− ∂a1

∂x2

)
dx1 ∧ dx2 + · · ·+

(
∂an

∂xn−1
− ∂an−1

∂xn

)
dxn−1 ∧ dxn.

In particular, equality of mixed derivatives shows that d2f = 0, and hence that
d2ω = 0 for any differential form. Hence the rules to remember about d are:

d(ω · σ) = (dω) · σ + (−1)degω ω · (dσ)
d2 = 0

df =
∂f

∂x1
dx1 + · · ·+ ∂f

∂xn
dxn.

2.4 Derivations.

A linear operator ` : A→ A is called an odd derivation if, like d, it satisfies

` : Aeven → Aodd, ` : Aodd → Aeven

and
`(ω · σ) = (`ω) · σ + (−1)degω ω · `σ.

A linear map ` : A→ A,

` : Aeven → Aeven, ` : Aodd → Aodd

satisfying
`(ω · σ) = (`ω) · σ + ω · (`σ)

is called an even derivation. So the Leibniz rule for derivations, even or odd, is

`(ω · σ) = (`ω) · σ + (−1)deg`degω ω · `σ.

Knowing the action of a derivation on a set of generators of a superalgebra
determines it completely. For example, the equations

d(xi) = dxi, d(dxi) = 0 ∀i

implies that

dp =
∂p

∂x1
dx1 + · · ·+ ∂p

∂xn
dxn

for any polynomial, and hence determines the value of d on any differential form
with polynomial coefficients. The local formula we gave for df where f is any
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differentiable function, was just the natural extension (by continuity, if you like)
of the above formula for polynomials.

The sum of two even derivations is an even derivation, and the sum of two
odd derivations is an odd derivation.

The composition of two derivations will not, in general, be a derivation, but
an instructive computation from the definitions shows that the commutator

[`1, `2] := `1 ◦ `2 − (−1)deg`1deg`2 `2 ◦ `1

is again a derivation which is even if both are even or both are odd, and odd if
one is even and the other odd.

A derivation followed by a multiplication is again a derivation: specifically,
let ` be a derivation (even or odd) and let τ be an even or odd element of A.
Consider the map

ω 7→ τ`ω.

We have

τ`(ωσ) = (τ`ω) · σ + (−1)deg`degωτω · `σ

= (τ`ω) · σ + (−1)(deg`+degτ)degωω · (τ`σ)

so ω 7→ τ`ω is a derivation whose degree is

degτ + deg`.

2.5 Pullback.

Let φ : M → N be a smooth map. Then the pullback map φ∗ is a linear map
that sends differential forms on N to differential forms on M and satisfies

φ∗(ω ∧ σ) = φ∗ω ∧ φ∗σ
φ∗dω = dφ∗ω

(φ∗f) = f ◦ φ.

The first two equations imply that φ∗ is completely determined by what it
does on functions. The last equation says that on functions, φ∗ is given by
“substitution”: In terms of local coordinates on M and on N φ is given by

φ(x1, . . . , xm) = (y1, . . . , yn)
yi = φi(x1, . . . , xm) i = 1, . . . , n

where the φi are smooth functions. The local expression for the pullback of a
function f(y1, . . . , yn) is to substitute φi for the yis as into the expression for f
so as to obtain a function of the x′s.

It is important to observe that the pull back on differential forms is de-
fined for any smooth map, not merely for diffeomorphisms. This is the great
advantage of the calculus of differential forms.



2.6. CHAIN RULE. 35

2.6 Chain rule.

Suppose that ψ : N → P is a smooth map so that the composition

φ ◦ ψ : M → P

is again smooth. Then the chain rule says

(φ ◦ ψ)∗ = ψ∗ ◦ φ∗.

On functions this is essentially a tautology - it is the associativity of composition:
f ◦ (φ ◦ ψ) = (f ◦ φ) ◦ ψ. But since pull-back is completely determined by what
it does on functions, the chain rule applies to differential forms of any degree.

2.7 Lie derivative.

Let φt be a one parameter group of transformations of M . If ω is a differential
form, we get a family of differential forms, φ∗tω depending differentiably on t,
and so we can take the derivative at t = 0:

d

dt
(φ∗tω)|t=0 = lim

t=0

1
t

[φ∗tω − ω] .

Since φ∗t (ω ∧ σ) = φ∗tω ∧ φ∗tσ it follows from the Leibniz argument that

`φ : ω 7→ d

dt
(φ∗tω)|t=0

is an even derivation. We want a formula for this derivation.
Notice that since φ∗t d = dφ∗t for all t, it follows by differentiation that

`φd = d`φ

and hence the formula for `φ is completely determined by how it acts on func-
tions.

Let X be the vector field generating φt. Recall that the geometrical signifi-
cance of this vector field is as follows: If we fix a point x, then

t 7→ φt(x)

is a curve which passes through the point x at t = 0. The tangent to this curve
at t = 0 is the vector X(x). In terms of local coordinates, X has coordinates
X = (X1, . . . , Xn) where Xi(x) is the derivative of φi(t, x1, . . . , xn) with respect
to t at t = 0. The chain rule then gives, for any function f ,

`φf =
d

dt
f(φ1(t, x1, . . . , xn), . . . , φn(t, x1, . . . , xn))|t=0

= X1 ∂f

∂x1
+ · · ·+Xn ∂f

∂xn
.
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For this reason we use the notation

X = X1 ∂

∂x1
+ · · ·+Xn ∂

∂xn

so that the differential operator

f 7→ Xf

gives the action of `φ on functions.
As we mentioned, this action of `φ on functions determines it completely. In

particular, `φ depends only on the vector field X, so we may write

`φ = LX

where LX is the even derivation determined by

LXf = Xf, LXd = dLX .

2.8 Weil’s formula.

But we want a more explicit formula LX . For this it is useful to introduce an
odd derivation associated to X called the interior product and denoted by i(X).
It is defined as follows: First consider the case where

X =
∂

∂xj

and define its interior product by

i

(
∂

∂xj

)
f = 0

for all functions while

i

(
∂

∂xj

)
dxk = 0, k 6= j

and

i

(
∂

∂xj

)
dxj = 1.

The fact that it is a derivation then gives an easy rule for calculating i(∂/∂xj)
when applied to any differential form: Write the differential form as

ω + dxj ∧ σ

where the expressions for ω and σ do not involve dxj . Then

i

(
∂

∂xj

)
[ω + dxj ∧ σ] = σ.
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The operator

Xji

(
∂

∂xj

)
which means first apply i(∂/∂xj) and then multiply by the function Xj is again
an odd derivation, and so we can make the definition

i(X) := X1i

(
∂

∂x1

)
+ · · ·+Xni

(
∂

∂xn

)
. (2.1)

It is easy to check that this does not depend on the local coordinate system
used.

Notice that we can write

Xf = i(X)df.

In particular we have

LXdxj = dLXxj

= dXj

= di(X)dxj .

We can combine these two formulas as follows: Since i(X)f = 0 for any function
f we have

LXf = di(X)f + i(X)df.

Since ddxj = 0 we have

LXdxj = di(X)dxj + i(X)ddxj .

Hence

LX = di(X) + i(X)d = [d, i(X)] (2.2)

when applied to functions or to the forms dxj . But the right hand side of the
preceding equation is an even derivation, being the commutator of two odd
derivations. So if the left and right hand side agree on functions and on the
differential forms dxj they agree everywhere. This equation, (2.2), known as
Weil’s formula, is a basic formula in differential calculus.

We can use the interior product to consider differential forms of degree k as
k−multilinear functions on the tangent space at each point. To illustrate, let
σ be a differential form of degree two. Then for any vector field, X, i(X)σ is
a linear differential form, and hence can be evaluated on any vector field, Y to
produce a function. So we define

σ(X,Y ) := [i(X)σ] (Y ).
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We can use this to express exterior derivative in terms of ordinary derivative
and Lie bracket: If θ is a linear differential form, we have

dθ(X,Y ) = [i(X)dθ] (Y )
i(X)dθ = LXθ − d(i(X)θ)

d(i(X)θ)(Y ) = Y [θ(X)]
[LXθ] (Y ) = LX [θ(Y )]− θ(LX(Y ))

= X [θ(Y )]− θ([X,Y ])

where we have introduced the notation LXY =: [X,Y ] which is legitimate since
on functions we have

(LXY )f = LX(Y f)− Y LXf = X(Y f)− Y (Xf)

so LXY as an operator on functions is exactly the commutator of X and Y .
(See below for a more detailed geometrical interpretation of LXY .) Putting the
previous pieces together gives

dθ(X,Y ) = Xθ(Y )− Y θ(X)− θ([X,Y ]), (2.3)

with similar expressions for differential forms of higher degree.

2.9 Integration.

Let
ω = fdx1 ∧ · · · ∧ dxn

be a form of degree n on Rn. (Recall that the most general differential form of
degree n is an expression of this type.) Then its integral is defined by∫

M

ω :=
∫

M

fdx1 · · · dxn

where M is any (measurable) subset. This,of course is subject to the condition
that the right hand side converges if M is unbounded. There is a lot of hidden
subtlety built into this definition having to do with the notion of orientation.
But for the moment this is a good working definition.

The change of variables formula says that if φ : M → Rn is a smooth
differentiable map which is one to one whose Jacobian determinant is everywhere
positive, then ∫

M

φ∗ω =
∫

φ(M)

ω.

2.10 Stokes theorem.

Let U be a region in Rn with a chosen orientation and smooth boundary. We
then orient the boundary according to the rule that an outward pointing normal
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vector, together with the a positive frame on the boundary give a positive frame
in Rn. If σ is an (n− 1)−form, then∫

∂U

σ =
∫

U

dσ.

A manifold is called orientable if we can choose an atlas consisting of charts
such that the Jacobian of the transition maps φα◦φ−1

β is always positive. Such a
choice of an atlas is called an orientation. (Not all manifolds are orientable.) If
we have chosen an orientation, then relative to the charts of our orientation, the
transition laws for an n−form (where n = dimM) and for a density are the same.
In other words, given an orientation, we can identify densities with n−forms
and n−form with densities. Thus we may integrate n−forms. The change of
variables formula then holds for orientation preserving diffeomorphisms as does
Stokes theorem.

2.11 Lie derivatives of vector fields.

Let Y be a vector field and φt a one parameter group of transformations whose
“infinitesimal generator” is some other vector field X. We can consider the
“pulled back” vector field φ∗tY defined by

φ∗tY (x) = dφ−t{Y (φtx)}.

In words, we evaluate the vector field Y at the point φt(x), obtaining a tangent
vector at φt(x), and then apply the differential of the (inverse) map φ−t to
obtain a tangent vector at x.

If we differentiate the one parameter family of vector fields φ∗tY with respect
to t and set t = 0 we get a vector field which we denote by LXY :

LXY :=
d

dt
φ∗tY|t=0.

If ω is a linear differential form, then we may compute i(Y )ω which is a
function whose value at any point is obtained by evaluating the linear function
ω(x) on the tangent vector Y (x). Thus

i(φ∗tY )φ∗tω(x) = 〈dφ∗tω(φtx), dφ−tY (φtx)〉 = {i(Y )ω}(φtx).

In other words,
φ∗t {i(Y )ω} = i(φ∗tY )φ∗tω.

We have verified this when ω is a differential form of degree one. It is trivially
true when ω is a differential form of degree zero, i.e. a function, since then both
sides are zero. But then, by the derivation property, we conclude that it is true
for forms of all degrees. We may rewrite the result in shorthand form as

φ∗t ◦ i(Y ) = i(φ∗tY ) ◦ φ∗t .
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Since φ∗t d = dφ∗t we conclude from Weil’s formula that

φ∗t ◦ LY = Lφ∗t Y ◦ φ∗t .

Until now the subscript t was superfluous, the formulas being true for any fixed
diffeomorphism. Now we differentiate the preceding equations with respect to t
and set t = 0. We obtain,using Leibniz’s rule,

LX ◦ i(Y ) = i(LXY ) + i(Y ) ◦ LX

and
LX ◦ LY = LLXY + LY ◦ LX .

This last equation says that Lie derivative (on forms) with respect to the vector
field LXY is just the commutator of LX with LY :

LLXY = [LX , LY ].

For this reason we write
[X,Y ] := LXY

and call it the Lie bracket (or commutator) of the two vector fields X and Y .
The equation for interior product can then be written as

i([X,Y ]) = [LX , i(Y )].

The Lie bracket is antisymmetric in X and Y . We may multiply Y by a function
g to obtain a new vector field gY . Form the definitions we have

φ∗t (gY ) = (φ∗t g)φ
∗
tY.

Differentiating at t = 0 and using Leibniz’s rule we get

[X, gY ] = (Xg)Y + g[X,Y ] (2.4)

where we use the alternative notation Xg for LXg. The antisymmetry then
implies that for any differentiable function f we have

[fX, Y ] = −(Y f)X + f [X,Y ]. (2.5)

From both this equation and from Weil’s formula (applied to differential forms
of degree greater than zero) we see that the Lie derivative with respect to X at
a point x depends on more than the value of the vector field X at x.

2.12 Jacobi’s identity.

From the fact that [X,Y ] acts as the commutator of X and Y it follows that
for any three vector fields X,Y and Z we have

[X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0.
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This is known as Jacobi’s identity. We can also derive it from the fact that
[Y,Z] is a natural operation and hence for any one parameter group φt of dif-
feomorphisms we have

φ∗t ([Y, Z]) = [φ∗tY, φ
∗
tZ].

If X is the infinitesimal generator of φt then differentiating the preceding equa-
tion with respect to t at t = 0 gives

[X, [Y, Z]] = [[X,Y ], Z] + [Y, [X,Z]].

In other words, X acts as a derivation of the “mutliplication” given by Lie
bracket. This is just Jacobi’s identity when we use the antisymmetry of the
bracket. In the future we we will have occasion to take cyclic sums such as
those which arise on the left of Jacobi’s identity. So if F is a function of three
vector fields (or of three elements of any set) with values in some vector space
(for example in the space of vector fields) we will define the cyclic sum Cyc F
by

Cyc F (X,Y, Z) := F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ).

With this definition Jacobi’s identity becomes

Cyc [X, [Y,Z]] = 0. (2.6)

Exercises

2.13 Left invariant forms.

Let G be a group and M be a set. A left action of G on M consists of a map

φ : G×M →M

satisfying the conditions

φ(a, φ(b,m))) = φ(ab,m)

(an associativity law) and

φ(e,m) = m, ∀m ∈M

where e is the identity element of the group. When there is no risk of confusion
we will write am for φ(a,m).(But in much of the beginning of the following
exercises there will be a risk of confusion since there will be several different
actions of the same group G on the set M). We think of an action as assigning
to each element a ∈ G a transformation, φa, of M :

φa : M →M, φa : m 7→ φ(a,m).

So we also use the notation

φam = φ(a,m).
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For example, we may take M to be the group G itself and let the action be left
multiplication, L, so

L(a,m) = am.

We will write
La : G→ G, Lam = am.

We may may also consider the (left) action of right multiplication:

R : G×G→ G, R(a,m) = ma−1.

(The inverse is needed to get the order right in R(a,R(b,m)) = R(ab,m).) So
we will write

Ra : G→ G, Ram = ma−1.

We will be interested in the case that G is a Lie group, which means that
G is a manifold and the multiplication map G × G → G and the inverse map
G→ G, a 7→ a−1 are both smooth maps. Then the differential, (dLa)m maps
the tangent space to G at m, to the tangent space to G at am:

dLa : TGm → TGam

and similarly
dRa : TGm → TGma.

In particular,
dLa−1 : TGa → TGe.

Let G = Gl(n) be the group of all invertible n × n matrices. It is an open
subset (hence a submanifold) of the n2 dimensional space Mat(n) of all n × n
matrices. We can think of the tautological map which sends every A ∈ G into
itself thought of as an element of Mat(n) as a matrix valued function on G. Put
another way, A is a matrix of functions on G, each of the matrix entries Aij of
A is a function on G. Hence dA = (dAij) is a matrix of differential forms (or,
we may say, a matrix valued differential form). So we may consider

A−1dA

which is also a matrix valued differential form on G. Let B be a fixed element
of G.

1. Show that
L∗B(A−1dA) = A−1dA. (2.7)

So each of the entries of A−1dA is left invariant.

2. Show that
R∗

B(A−1dA) = B(A−1dA)B−1. (2.8)

So the entries of A−1dA are not right invariant (in general), but (2.8) shows
how they are transformed into one another by right multiplication.
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For any two matrix valued differential forms R = (Rij) and S = (Sij) define
their matrix exterior product R∧S by the usual formula for matrix product, but
with exterior multiplication of the entries instead of ordinary multiplication, so

(R ∧ S)ik :=
∑

j

Rij ∧ Sjk.

Also, if R = (Rij) is a matrix valued differential form, define dR by applying d
to each of the entries. So

(dR)ij := (dRij).

Finally, if ψ : X → Y is a smooth map and R = (Rij) is a matrix valued form
on Y then we define its pullback by pulling back each of the entries:

(ψ∗R)ij := (ψ∗Rij).

2.14 The Maurer Cartan equations.

3. In elementary calculus we have the formula d(1/x) = −dx/x2. What is the
generalization of this formula for the matrix function A−1. In other words, what
is the formula for d(A−1)?

4. Show that if we set ω = A−1dA then

dω + ω ∧ ω = 0. (2.9)

Here is another way of thinking about A−1dA: Since G = Gl(n) is an open
subset of the vector space Mat(n), we may identify the tangent space TGA with
the vector space Mat(n). That is we have an isomorphism between TGA and
Mat(n). If you think about it for a minute, it is the form dA which effects this
isomorphism at every point. On the other hand, left multiplication by A−1 is
a linear map. Under this identification, the differential of a linear map L looks
just like L. So in terms of this identification, A−1dA, when evaluated at the
tangent space TGA is just the isomorphism dL−1

A : TGA → TGI where I is the
identity matrix.

2.15 Restriction to a subgroup

Let H be a Lie subgroup of G. This means that H is a subgroup of G and it is
also a submanifold. In other words we have an embedding

ι : H → G
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which is a(n injective) group homomorphism.Let

h = THI

denote the tangent space to H at the identity element.

5. Conclude from the preceding discussion that if we now set

ω = ι∗(A−1dA)

then ω takes values in h. In other words, when we evaluate ω on any tangent
vector at any point of H we get a matrix belonging to the subspace h.

6. Show that on a group, the only transformations which commute with all the
right multiplications, Rb, b ∈ G, are the left multiplications, La.

For any vector ξ ∈ THI , define the vector field X by

X(A) = dRA−1ξ.

(Recall that RA−1 is right multiplication by A and so sends I into A.) For
example, if we take H to be the full group G = Gl(n) and identify the tangent
space at every point with Mat(n) then the above definition becomes

X(A) = ξA.

By construction, the vector field X is right invariant, i.e. is invariant under all
the diffeomorphisms RB .

7. Conclude that the flow generated by X is left multiplication by a one param-
eter subgroup. Also conclude that in the case H = Gl(n) the flow generated by
X is left multiplication by the one parameter group

exp tξ.

Finally conclude that for a general subgroup H, if ξ ∈ h then all the exp tξ lie
in H.

8. What is the space h in the case that H is the group of Euclidean motions
in three dimensional space, thought of as the set of all four by four matrices of
the form (

A v
0 1

)
, AA† = I, v ∈ R3?

2.16 Frames.

Let V be an n dimensional vector space. Recall that frame on V is, by defini-
tion, an isomorphism f : Rn → V . Giving f is the same as giving each of the
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vectors fi = f(δi) where the δi range over the standard basis of Rn. So giving a
frame is the same as giving an ordered basis of V and we will sometimes write

f = (f1, . . . , fn).

If A ∈ Gl(n) then A is an isomorphism of Rn with itself, so f ◦ A−1 is another
frame. So we get an action, R : Gl(n) × F → F where F = F(V ) denotes the
space of all frames:

R(A, f) = f ◦A−1. (2.10)

If f and g are two frames, then g−1 ◦ f = M is an isomorphism of Rn with itself,
i.e. a matrix. So given any two frames, f and g, there is a unique M ∈ Gl(n)
so that g = f ◦M−1. Once we fix an f , we can use this fact to identify F with
Gl(n), but the identification depends on the choice of f . But in any event the
(non-unique) identification shows that F is a manifold and that (2.10) defines
an action of Gl(n) on F. Each of the fi (the i−th basis vector in the frame)
can be thought of as a V valued function on F. So we may write

dfj =
∑

ωijfi (2.11)

where the ωij are ordinary (number valued) linear differential forms on F. We
think of this equation as giving the expansion of an infinitesimal change in fj

in terms of the basis f = (f1, . . . , fn). If we use the “row” representation of f
as above, we can write these equations as

df = fω (2.12)

where ω = (ωij).

9. Show that the ω defined by (2.12) satisfies

R∗
Bω = BωB−1. (2.13)

To see the relation with what went on before, notice that we could take
V = Rn itself. Then f is just an invertible matrix, A and (2.12) becomes our
old equation ω = A−1dA. So (2.13) reduces to (2.8).

If we take the exterior derivative of (2.12) we get

0 = d(df) = df ∧ ω + fdω = f(ω ∧ ω + dω)

from which we conclude
dω + ω ∧ ω = 0. (2.14)

2.17 Euclidean frames.

We specialize to the case where V = Rn, n = d + 1 so that the set of frames
becomes identified with the group Gl(n) and restrict to the subgroup, H, of
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Euclidean motions which consist of all n×m matrices of the form(
A v
0 1

)
, A ∈ O(d), v ∈ Rd.

Such a matrix, when applied to a vector(
w
1

)
sends it into the vector (

Aw + v
1

)
and Aw + v is the orthogonal transformation A applied to w followed by the
translation by v. The corresponding Euclidean frames (consisting of the columns
of the elements of H) are thus defined to be the frames of the form

fi =
(
ei

0

)
, i = 1, . . . d,

where the ei form an orthonormal basis of Rd and

fn =
(
v
1

)
,

where v ∈ Rd is an arbitrary vector. The idea is that v represents a choice of
origin in d dimensional space and e = (e1, . . . , ed) is an orthonormal basis. We
can write this in shorthand notation as

f =
(

e v
0 1

)
.

If ι denotes the embedding of H into G, we know from the exercise 5 that

ι∗ω =
(

Ω θ
0 0

)
,

where
Ωij = −Ωji.

So the pull back of (2.12) becomes

d

(
e v
0 1

)
=
(

eΩ eθ
0 0

)
(2.15)

or, in more expanded notation,

dej =
∑

i

Ωijei, dv =
∑

i

θiei.
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Let ( , ) denote the Euclidean scalar product. Then we can write

θi = (dv, ei) (2.16)

and
(dej , ei) = Ωij .

If we set
Θ = −Ω

this becomes
(dei, ej) = Θij . (2.17)

Then (2.14) becomes
dθ = Θ ∧ θ, dΘ = Θ ∧Θ. (2.18)

Or, in more expanded notation,

dθi =
∑

j

Θij ∧ θj , dΘik =
∑

j

Θij ∧Θjk. (2.19)

Equations (2.16)-(2.18) or (2.19) are known as the structure equations of
Euclidean geometry.

2.18 Frames adapted to a submanifold.

Let M be a k dimensional submanifold of Rd. This determines a submanifold
of the manifold, H, of all Euclidean frames by the following requirements:

i) v ∈M and
ii) ei ∈ TMv for i ≤ k. We will usually write m instead of v to emphasize

the first requirement - that the frames be based at points of M . The second
requirement says that the first k vectors in the frame based at m be tangent to
M (and hence that the last n − k vectors in the frame are normal to M). We
will denote this manifold by O(M). It has dimension

k +
k(k − 1)

2
+

(d− k − 1)(d− k)
2

.

The first term comes from the pointm varying onM , the second is the dimension
of the orthogonal group O(k) corresponding to the choices of the first k vectors
in the frame, and the third term is dim O(d− k) correspond to the last (n− k)
vectors. We have an embedding of O(M) into H, and hence the forms θ and Θ
pull back to O(M). As we are running out of letters, we will continue to denote
these pull backs by the same letters. So the pulled back forms satisfy the same
structure equations (2.16)-(2.18) or (2.19) as above, but they are supplemented
by

θi = 0, ∀i > k. (2.20)
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2.19 Curves and surfaces - their structure equa-
tions.

We will be particularly interested in curves and surfaces in three dimensional
Euclidean space. For a curve, C, the manifold of frames is two dimensional, and
we have

dC = θ1e1 (2.21)
de1 = Θ12e2 + Θ13e3 (2.22)
de2 = Θ21e1 + Θ23e3 (2.23)
de3 = Θ31e1 + Θ32e2. (2.24)

One can visualize the manifold of frames as a sort of tube: about each point of
the curve there is a circle in the plane normal to the tangent line corresponding
the possible choices of e2.

For the case of a surface the manifold of frames is three dimensional: we can
think of it as a union of circles each centered at a point of S and in the plane
tangent to S at that point. Then equation (2.21) is replaced by

dX = θ1e1 + θ2e2 (2.25)

but otherwise the equations are as above, including the structure equations
(2.19). These become

dθ1 = Θ12 ∧ θ2 (2.26)
dθ2 = −Θ12 ∧ θ1 (2.27)

0 = Θ31 ∧ θ1 + Θ32 ∧ θ2 (2.28)
dΘ12 = Θ13 ∧Θ32 (2.29)
dΘ13 = Θ12 ∧Θ23 (2.30)
dΘ23 = Θ21 ∧Θ13 (2.31)

Equation (2.29) is known as Gauss’ equation, and equations (2.30) and (2.31)
are known as the Codazzi-Mainardi equations.

2.20 The sphere as an example.

In computations with local coordinates, we may find it convenient to use a
“cross-section” of the manifold of frames, that is a map which assigns to each
point of neighborhood on the surface a preferred frame. If we are given a
parametrization m = m(u, v) of the surface, one way of choosing such a cross-
section is to apply the Gram-Schmidt orthogonalization procedure to the tan-
gent vector fields mu and mv, and take into account the chosen orientation.

For example, consider the sphere of radius R. We can parameterize the
sphere with the north and south poles (and one longitudinal semi-circle) removed
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by the (u, v) ∈ (0, 2π)× (0, π) by X = X(u, v) where

X(u, v) =

 R cosu sin v
R sinu sin v
R cos v

 .

Here v denotes the angular distance from the north pole, so the excluded value
v = 0 corresponds to the north pole and the excluded value v = π corresponds
to the south pole. Each constant value of v between 0 and π is a circle of latitude
with the equator given by v = π

2 . The parameter u describes the longitude from
the excluded semi-circle.

In any frame adapted to a surface in R3, the third vector e3 is normal to
the surface at the base point of the frame. There are two such choices at each
base point. In our sphere example let us choose the outward pointing normal,
which at the point m(u, v) is

e3(m(u, v)) =

cosu sin v
sinu sin v
cosv

 .

We will write the left hand side of this equation as e3(u, v). The coordinates
u, v are orthogonal, i.e. Xu and Xv are orthogonal at every point, so the or-
thonormalization procedure amounts only to normalization: Replace each of
these vectors by the unit vectors pointing in the same direction at each point.
So we get

e1(u, v) =

− sinu
cosu

0

 , e2(u, v) =

cosu cos v
sinu cos v
− sin v

 .

We thus obtain a map ψ from (0, 2π)× (0, π) to the manifold of frames,

ψ(u, v) = (X(u, v), e1(u, v), e2, (u, v), e3(u, v)).

Since Xu · e1 = R sin v and Xv · e2 = R we have

dX(u, v) = (R sin vdu)e1(u, v) + (Rdv)e2(u, v).

Thus we see from (2.25) that

ψ∗θ1 = R sin vdu, ψ∗θ2 = Rdv

and hence that
ψ∗(θ1 ∧ θ2) = R2 sin vdu ∧ dv.

Now R2 sin vdudv is just the area element of the sphere expressed in u, v co-
ordinates. The choice of e1, e2 determines an orientation of the tangent space
to the sphere at the point X(u, v) and so ψ∗(θ1 ∧ θ2) is the pull-back of the
corresponding oriented area form.
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10. Compute ψ∗Θ12, ψ
∗Θ13, and ψ∗Θ23 and verify that

ψ∗(dΘ12) = −ψ∗(K)ψ∗(θ1 ∧ θ2)

where K = 1/R2 is the curvature of the sphere.

We will generalize this equation to an arbitrary surface in R3 in section ??.

2.21 Ribbons

The idea here is to study a curve on a surface, or rather a curve with an
“infinitesimal” neighborhood of a surface along it. So let C be a curve and
O(C) its associated two dimensional manifold of frames. We have a projection
π : O(C) → C sending every frame into its origin. By a ribbon based on C we
mean a section n : C → O(C), so n assigns a unique frame to each point of the
curve in a smooth way. We will only be considering curves with non-vanishing
tangent vector everywhere. With no loss of generality we may assume that we
have parametrized the curve by arc length, and the choice of e1 determines an
orientation of the curve, so θ = ds. The choice of e2 at every point then de-
termines e3 up to a ± sign. So a good way to visualize s is to think of a rigid
metal ribbon determined by the curve and the vectors e2 perpendicular to the
curve (determined by n) at each point. The forms Θij all pull back under n to
function multiples of ds:

n∗Θ12 = kds, n∗Θ23 = −τds, n∗Θ13 = wds (2.32)

where k, τ and w are functions of s. We can write equations (2.21)- (2.24) above
as

dC

ds
= e1,

and

de1
ds

= ke2 + we3,
de2
ds

= −ke1 − τe3,
de3
ds

= −we1 + τe3. (2.33)

For later applications we will sometimes be sloppy and write Θij instead of
n∗Θij for the pull back to the curve, so along the ribbon we have Θ12 = kds etc.
Also it will sometimes be convenient in computations (as opposed to proving
theorems) to use parameters other than arc length.

11. Show that two ribbons (defined over the same interval of s values) are
congruent (that is there is a Euclidean motion carrying one into the other) if
and only if the functions k, τ, and w are the same.

A ribbon is really just a curve in the space, H, of all Euclidean frames, having
the property that the base point, that is the v of the frame (v, e1, e2, e3) has non-
vanishing derivative. The previous exercise says that two curves, i : I → H and
j : I → H in H differ by an overall left translation (that is satisfy j = Lh ◦ i)if
and only if the forms θ,Θ12,Θ13,Θ23 pull back to the same forms on I. The
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form i∗θ is just the arc length form ds as we mentioned above. It is absolutely
crucial for the rest of this course to understand the meaning of the form i∗Θ12.

Consider a circle of latitude on a sphere of radius R. To fix the notation,
suppose that the circle is at angular distance v from the north pole and that
we use u as angular coordinates along the circle. Take the ribbon adapted to
the sphere, so e1 is the unit tangent vector to the circle of latitude and e2 is the
unit tangent vector to the circle of longitude chosen as above. Problem 10 then
implies that i∗Θ12 = −cosvdu.

12. Let C be a straight line (say a piece of the z-axis) parametrized according
to arc length and let e2 be rotating at a rate f(s) about C (so, for example,
e2 = cos f(s)i + sin f(s)j where i and j are the unit vectors in the x and y
directions). What is i∗Θ12?

To continue our understanding of Θ12, let us consider what it means for two
ribbons, i : I → H and j : I → H to have the same value of the pullback of Θ12

at some point s0 ∈ I (where I is some interval on the real line). So

(i∗Θ12)|s=s0 = (j∗Θ12)|s=s0 .

There is a (unique) left multiplication, that is a unique Euclidean motion, which
carries i(s0) to j(s0). Let assume that we have applied this motion so we assume
that i(s0) = j(s0). Let us write

i(s) = (C(s), e1(s), e2(s), e3(s)), j(s) = (D(s), f1(s), f2(s).f3(s))

and we are assuming that C(s0) = D(s0), C ′(s0) = e1(s0) = f1(s0) = D′(s0)
so the curves C and D are tangent at s0, and that e2(s0) = f2(s0) so that the
planes of the ribbon (spanned by the first two orthonormal vectors) coincide.
Then our condition about the equality of the pullbacks of Θ12 asserts that

((e′2 − f ′2)(s0), e1(s0)) = 0

and of course ((e′2 − f ′2)(s0), e2(s0)) = 0 automatically since e2(s) and f2(s)
are unit vectors. So the condition is that the relative change of e2 and f2 (and
similarly e1 and f1 ) at s0 be normal to the common tangent plane to the ribbon.

2.22 Developing a ribbon.

We will now drop one dimension, and consider ribbons in the plane (or, if you
like, ribbons lying in a fixed plane in three dimensional space). So all we have
is θ and Θ12 . Also, the orientation of the curve and of the plane completely
determines e2 as the unit vector in the plane perpendicular to the curve and
such that e1, e2 give the correct orientation. so a ribbon in the plane is the same
as an oriented curve.

13. Let k = k(s) be any continuous function of s. Show that there is a ribbon
in the plane whose base curve is parametrized by arc length and for which
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j∗Θ12 = kds. Furthermore, show that this planar ribbon (curve) is uniquely
determined up to a planar Euclidean motion.

It follows from the preceding exercise, that we have a way of associating
a curve in the plane (determined up to a planar Euclidean motion) to any
ribbon in space. It consists of rocking and rolling the ribbon along the plane in
such a way that infinitesimal change in the e1 and e2 are always normal to the
plane. Mathematically, it consists in solving problem 13 for the k = k(s) where
i∗Θ12 = kds for the ribbon. We call this operation developing the ribbon onto a
plane. In particular, if we have a curve on a surface, we can consider the ribbon
along the curve induced by the surface. In this way, we may talk of developing
the surface on a plane along the given curve. Intuitively, if the surface were
convex, this amounts to rolling the surface on a plane along the curve.

noindent14. What are results of developing the ribbons of Problem 12 and
the ribbon we associated to a circle of latitude on the sphere?

2.23 Parallel transport along a ribbon.

Recall that a ribbon is a curve in the space, H, of all Euclidean frames, having
the property that the base point, that is the C of the frame (C, e1, e2, e3) has
non-vanishing derivative at all points. So C defines a curve in Euclidean three
space with nowhere vanishing tangent. We will parameterize this curve (and
the ribbon) by arc length. By a unit vector field tangent to the ribbon we will
mean a curve, v(s) of unit vectors everywhere tangent to the ribbon, so

v(s) = cosα(s) e1(s) + sinα(s) e2(s). (2.34)

We say that the vector field is parallel along the ribbon if the infinitesimal change
in v is always normal to the ribbon, i.e. if

(v′(s), e1(s)) ≡ (v′(s), e2(s)) ≡ 0.

Recall the form Θ12 = kds from before.

15. Show that the vector field as given above is parallel if and only if the
function α satisfies the differential equation

α′ + k = 0.

Conclude that the notion of parallelism depends only on the form Θ12. Also
conclude that given any unit vector, v0 at some point s0, there is a unique
parallel vector field taking on the value v0 at s0. The value v(s1) at some
second point is called the parallel transport of v0 (along the ribbon) from s0 to
s1.
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16. What is the condition on a ribbon that the tangent vector to the curve
itself, i.e. the vector field e1, be parallel? Which circles on the sphere are such
that the associated ribbon has this property?

Suppose the ribbon is closed, i.e. C(s+L) = C(s), e1(s+L) = e1(s), e2(s+
L) = e2(s) for some length L. We can then start with a vector v0 at point s0
and transport it all the way around the ribbon until we get back to the same
point, i.e. transport from s0 to s0 + L. The vector v1 we so obtain will make
some angle, call it Φ with the vector v0. The angle Φ is called the holonomy of
the (parallel transport of the) ribbon.

17. Show that Φ is independent of the choice of s0 and v0. What is its expression
in terms of Θ12?

18. What is the holonomy for a circle on the sphere in terms of its latitude.

19. Show that if the ribbon is planar (so e1 and e2 lie in a fixed plane) a
vector field is parallel if and only if it is parallel in the usual sense of Euclidean
geometry (say makes a constant angle with the x-axis). But remember that the
curve is turning. So the holonomy of a circle in the plane is ±2π depending on
the orientation. Similarly for the sum of the exterior angles of a triangle (think
of the corners as being rounded out).

Convince yourself of the following fact which is not so easy unless you know
the trick: Show that for any smooth simple closed curve (i.e. one with no self
intersections) in the plane the holonomy is always ±2π.

Exercises 15,17, and 19, together with the results above give an alternative
interpretation of parallel transport: develop the ribbon onto the plane and then
just translate the vector v0 in the Euclidean plane so that its origin lies at the
image of s1. Then consider the corresponding vector field along the ribbon.

The function k in Θ12 = kds is called the geodesic curvature of the ribbon.
The integral

∫
Θ12 =

∫
kds is called the total geodesic curvature of the ribbon. It

gives the total change in angle (including multiples of 2π) between the tangents
to the initial and final points of the developed curve.

2.24 Surfaces in R3.

We let M be a two dimensional submanifold of R3 and O its bundle of adapted
frames. We have a “projection” map

π : O →M, (m, e1, e2, e3) 7→ m,

which we can also write
π = m.
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Suppose that we consider the “truncated” version of the adapted bundle of
frames Õ where we forget about e3. That is, let consist of all (m, e1.e2) where
m ∈ M and e1, e2 is an orthonormal basis of the tangent space TMm to M at
m. Notice that the definition we just gave was intrinsic. The concept of an
orthonormal basis of TMm depends only on the scalar product on TMm. The
differential of the map m : Õ →M at a point (m, e1, e2) sends a tangent vector
ξ to Õ at (m, e1, e2, e3) to a tangent vector to M at m, and the scalar product
of this image vector with e1 is a linear function of ξ. We have just given an
intrinsic of θ1. (By abuse of language I am using this same letter θ1 for the form
(dm, e1) on Õ as e3 does not enter into its definition.) Similarly, we see that θ2
is an intrinsically defined form. From their very definitions, the forms θ1 and θ2
are linearly independent at every point of Õ. Therefore the forms dθ1 and dθ2
are intrinsic, and this proves that the form Θ12 is intrinsic. Indeed, if we had
two linear differential forms σ and τ on O which satisfied

dθ1 = σ ∧ θ2,
dθ1 = τ ∧ θ2
dθ2 = −σ ∧ θ1
dθ2 = −τ ∧ θ1

then the first two equations give

(σ − τ) ∧ θ2 ≡ 0

which implies that (σ − τ) is a multiple of θ2 and the last two equations imply
that σ−τ is a multiple of θ1 so σ = τ . The next few problems will give a (third)
proof of Gauss’s theorema egregium. They will show that

dΘ12 = −π∗(K)θ1 ∧ θ2

where K is the Gaussian curvature.
This assertion is local (in M), so we may temporarily make the assumption

that M is orientable - this allows us to look at the sub-bundle O ⊂ O of oriented
frames, consisting of those frames for which e1, e2 form an oriented basis of TMm

and where e1, e2, e3 an oriented frame on R3.
Let dA denote the (oriented) area form on the surface M . (A bad but

standard notation, since we the area form is not the differential of a one form,
in general.) Recall that when evaluated on any pair of tangent vectors, η1, η2 at
m ∈ M it is the oriented area of the parallelogram spanned by η1 and η2, and
this is just the determinant of the matrix of scalar products of the η’s with any
oriented orthonormal basis. Conclude

20. Explain why
π∗dA = θ1 ∧ θ2.

The third component, e3 of any frame is completely determined by the point
on the surface and the orientation as the unit normal, n to the surface. Now n



2.24. SURFACES IN R3. 55

can be thought of as a map from M to the unit sphere, S in R3. Let dS denote
the oriented area form of the unit sphere. So n∗dS is a two form on M and we
can define the function K by

n∗dS = KdA.

21 Show that he function K is Gaussian curvature of the surface.

22. Show that
n∗dS = Θ31 ∧Θ32

and

23. Conclude that
dΘ12 = −π∗(KdA).

We are going to want to apply Stokes’ theorem to this formula. But in order
to do so, we need to integrate over a two dimensional region. So let U be some
open subset of M and let

ψ : U → π−1U ⊂ O

be a map satisfying
π ◦ ψ = id.

So ψ assigns a frame to each point of U in a differentiable manner. Let C be a
curve on M and suppose that C lies in U . Then the surface determines a ribbon
along this curve, namely the choice of frames from which e1 is tangent to the
curve (and pointing in the positive direction). So we have a map R : C → O
coming from the geometry of the surface, and (with now necessarily different
notation from the preceding section) R∗Θ12 = kds is the geodesic curvature of
the ribbon as studied above. Since the ribbon is determined by the curve (as M
is fixed) we can call it the geodesic curvature of the curve. On the other hand,
we can consider the form ψ∗Θ12 pulled back to the curve. Let

ψ ◦ C (s) = (C(s), f1(s), f2(s), n(s))

and let φ(s) be the angle that e1(s) makes with f1(s) so

e1(s) = cosφ(s)f1(s) + sinφ(s)f2(s), e2(s) = − sinφ(s)f1(s) + cosφ(s)f2(s).

24. Let C∗ψ∗Θ12 denote the pullback of ψ∗Θ12 to the curve. Show that

kds = dφ+ C∗ψ∗Θ12.

Conclude that
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Proposition 2 The
total geodesic curvature = φ(b)−φ(a)+

∫
C
ψ ∗Θ12 where φ(b)−φ(a) denotes

the total change of angle around the curve.

How can we construct a ψ? Here is one way that we described earlier:
Suppose that U is a coordinate chart and that x1, x2 are coordinates on this
chart. Then ∂

∂x1
, ∂

∂x2
are linearly independent vectors at each point and we

can apply Gram Schmidt to orthonomalize them. This give a ψ and the angle
φ above is just the angle that the vector e1 makes with the x−axis in this
coordinate system. Suppose we take C to be the boundary of some nice region,
D, in U . For example, suppose that C is a triangle or some other polygon with
its edges rounded to make a smooth curve. Then the total change in angle is
2π and so

25. Conclude that for such a curve∫ ∫
D

KdA+
∫

C

kds = 2π.

The integral of KdA is called the total Gaussian curvature.

26. Show that as the curve actually approaches the polygon, the contribution
from the rounded corners approaches the exterior angle of the polygon. Con-
clude that if a region in a coordinate neighborhood on the surface is bounded
by continuous piecewise differentiable arcs making exterior angles at the corners

Proposition 3 the total Gaussian curvature +
∑

total geodesic curvatures +∑
exterior angles = 2π.

27. Suppose that we have subdivided a compact surface into polygonal regions,
each contained in a coordinate neighborhood, with f faces, e edges, and v
vertices. Let ξ = f − e+ v. show that∫

M

KdA = 2πξ.



Chapter 3

Levi-Civita Connections.

3.1 Definition of a linear connection on the tan-
gent bundle.

A linear connection ∇ on a manifold M is a rule which assigns a vector field
∇XY to each pair of vector fields X and Y which is bilinear (over R) subject
to the rules

∇fXY = f∇XY (3.1)

and
∇X(gY ) = (Xg)Y + g(∇XY ). (3.2)

While condition (3.2) is the same as the corresponding condition

LX(gY ) = [X, gY ] = (Xg)Y + gLXY

for Lie derivatives, condition (3.1) is quite different from the corresponding
formula

LfXY = [fX, Y ] = −(Y f)X + fLXY

for Lie derivatives. In contrast to the Lie derivative, condition (3.1) implies that
the value of ∇XY at x ∈M depends only on the value X(x).

If ξ ∈ TMx is a tangent vector at x ∈ M , and Y is a vector field defined in
some neighborhood of x we use the notation

∇ξY := (∇XY )(x), where X(x) = ξ. (3.3)

By the preceding comments, this does not depend on how we choose to extend
ξ to X so long as X(x) = ξ.

While the Lie derivative is an intrinsic notion depending only on the differ-
entiable structure, a connection is an additional piece of geometric structure.

57
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3.2 Christoffel symbols.

These give the expression of a connection in local coordinates: Let x1, . . . , xn

be a coordinate system, and let us write

∂i :=
∂

∂xi

for the corresponding vector fields. Then

∇∂i∂j =
∑

k

Γk
ij∂k

where the functions Γk
ij are called the Christoffel symbols. We will frequently

use the shortened notation
∇i := ∇∂i

.

So the definition of the Christoffel symbols is written as

∇i∂j =
∑

k

Γk
ij∂k. (3.4)

If
Y =

∑
j

Y j∂j

is the local expression of a general vector field Y then (3.2) implies that

∇iY =
∑

k

∂Y k

∂xi
+
∑

j

Γk
ijY

j

 ∂k. (3.5)

3.3 Parallel transport.

Let C : I → M be a smooth map of an interval I into M . We refer to C as
a parameterized curve. We will say that this curve is non-singular if C ′(t) 6= 0
for any t where C ′(t) denotes the tangent vector at t ∈ I. By a vector field
Z along C we mean a rule which smoothly attaches to each t ∈ I a tangent
vector Z(t) to M at C(t). We will let V(C) denote the set of all smooth vector
fields along C. For example, if V is a vector field on M , then the restriction of
V to C, i.e. the rule

VC(t) := V (C(t))

is a vector field along C. Since the curve C might cross itself, or be closed, it is
clear that not every vector field along C is the restriction of a vector field.

On the other hand, if C is non-singular, then the implicit function theorem
says that for any t0 ∈ I we can find an interval J containing t0 and a system of
coordinates about C(t0) in M such that in terms of these coordinates the curve
is given by

x1(t) = t, xi(t) = 0, i > 1
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for t ∈ J . If Z is a smooth vector field along C then for t ∈ J we may write

Z(t) =
∑

j

Zj(t)∂j(t, 0, . . . , 0).

We may then define the vector field Y on this coordinate neighborhood by

Y (x1, . . . , xn) =
∑

j

Zj(x1)∂j

and it is clear that Z is the restriction of Y to C on J . In other words, locally,
every vector field along a non-singular curve is the restriction of a vector field
of M . If Z = YC is the restriction of a vector field Y to C we can define its
“derivative” Z ′, also a vector field along C by

Y ′
C(t) := ∇C′(t)Y. (3.6)

If g is a smooth function defined in a neighborhood of the image of C, and h is
the pull back of g to I via C, so

h(t) = g(C(t))

then the chain rule says that

h′(t) =
d

dt
g(C(t)) = C ′(t)g,

the derivative of g with respect to the tangent vector C ′(t). Then if

Z = YC

for some vector field Y on M (and h = g(C(t))) equation (3.2) implies that

(hZ)′ = h′Z + hZ ′. (3.7)

We claim that there is a unique linear map Z 7→ Z ′ defined on all of V(C) such
that (3.7) and (3.6) hold. Indeed, to prove uniqueness, it is enough to prove
uniqueness in a coordinate neighborhood, where

Z(t) =
∑

j

Zj(t)(∂i)C .

Equations (3.7) and (3.6) then imply that

Z ′(t) =
∑

j

(
Zj′(t)(∂j)C + Zj(t)∇C′(t)∂j

)
. (3.8)

In other words, any notion of “derivative along C” satisfying (3.7) and (3.6) must
be given by (3.8) in any coordinate system. This proves the uniqueness. On the
other hand, it is immediate to check that (3.8) satisfies (3.7) and (3.6) if the
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curve lies entirely in a coordinate neighborhood. But the uniqueness implies
that on the overlap of two neighborhoods the two formulas corresponding to
(3.8) must coincide, proving the global existence.

We can make formula (3.8) even more explicit in local coordinates using the
Christoffel symbols which tell us that

∇C′(t)∂j =
∑

k

Γk
ij

dxi ◦ C
dt

(∂k)C .

Substituting into (3.8) gives

Z ′ =
∑

k

dZk

dt
+
∑
ij

Γk
ij

dxi ◦ C
dt

Zj

 (∂k)C . (3.9)

A vector field Z along C is said to be parallel if

Z ′(t) ≡ 0.

Locally this amounts to the Zi satisfying the system of linear differential equa-
tions

dZk

dt
+
∑
ij

Γk
ij

dxi ◦ C
dt

Zj = 0. (3.10)

Hence the existence and uniqueness theorem for linear homogeneous differential
equations (in particular existence over the entire interval of definition) implies
that

Proposition 4 For any ζ ∈ TMC(0) there is a unique parallel vector field Z
along C with Z(0) = ζ.

The rule t 7→ C ′(t) is a vector field along C and hence we can compute its
derivative, which we denote by C ′′ and call the acceleration of C. Whereas
the notion of tangent vector, C ′, makes sense on any manifold, the acceleration
only makes sense when we are given a connection.

3.4 Geodesics.

A curve with acceleration zero is called a geodesic. In local coordinates we
substitute Zk = xk′ into (3.10) to obtain the equation for geodesics in local
coordinates:

d2xk

dt2
+
∑
ij

Γk
ij

dxi

dt

dxj

dt
= 0, (3.11)

where we have written xk instead of xk ◦C in (3.11) to unburden the notation.
The existence and uniqueness theorem for ordinary differential equations implies
that
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Proposition 5 For any tangent vector ξ at any point x ∈M there is an interval
I about 0 and a unique geodesic C such that C(0) = x and C ′(0) = ξ.

By the usual arguments we can then extend the domain of definition of the
geodesic through ξ to be maximal.

This is the first of many definitions (or characterizations, if take this to be
the basic definition) that we shall have of geodesics - the notion of being self-
parallel. (In the case that all the Γk

ij = 0 we get the equations for straight
lines.)

Suppose that C : I → M is a (non-constant) geodesic, and we consider a
“reparametrization” of C, i.e. consider the curve B = C ◦ h : J → M where
h : J → I is a diffeomorphism of the interval J onto the interval I. We write
t = h(s) so that

dB

ds
=
dC

dt

dh

ds

and hence
d2B

ds2
=
d2C

dt2

(
dh

ds

)2

+
dC

ds

d2h

ds2
=
dC

ds

d2h

ds2

since C ′′ = 0 as C is a geodesic. The fact that C is not constant (and the
uniqueness theorem for differential equations) says that C ′ is never zero. Hence
B is a geodesic if and only if

d2h

ds2
≡ 0

or
h(s) = as+ b

where a and b are constants with a 6= 0. In short, the fact of being a non-
constant geodesic determines the parameterization up to an affine change of
parameter.

3.5 Covariant differential.

We can extend the notion of covariant derivative with respect to a vector field
X (which has been defined on functions by f 7→ Xf and on vector fields by
Y 7→ ∇XY to all tensor fields: We first extend to linear differential forms by
the rule

(∇Xθ)(Y ) = X(θ(Y ))− θ(∇XY ) (3.12)

Replacing Y by gY has the effect of pulling out a factor of g since the two
terms on the right involving Xg cancel. This shows that ∇Xθ is again a linear
differential form. Notice that

∇fXθ = f∇Xθ

and
∇X(gθ) = (Xg)θ + g∇Xθ.
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We now extend ∇X to be a “tensor derivation” requiring that

∇X(α⊗ β) = (∇Xα)⊗ β + α⊗∇Xβ

for any pair of tensor fields α and β. For example

∇X(θ ⊗ Z) = ∇Xθ ⊗ Z + θ ⊗∇XZ.

This then defines ∇X on all tensor fields which are sums of products of one
forms and vector fields. Notice that if we define the “contraction”

C : θ ⊗ Z 7→ θ(Z)

then the definition (3.12) of ∇Xθ implies that

∇X(C(θ ⊗ Z)) = ∇X (θ(Z)) = C (∇Xθ ⊗ Z + θ ⊗∇XZ) = C(∇X(θ ⊗ Z)).

in other words, ∇X commutes with contraction

∇X ◦ C = C ◦ ∇X . (3.13)

This was checked in the special case that we had a tensor of type (1,1) which
was the tensor product of a one form and a vector field. But if we have a tensor
of type (r,s) which is a product of one forms and vector fields, then we may form
the contraction of any one-form factor with any vector field factor to obtain a
tensor of type (r-1,s-1) and (3.13) continues to hold.

If γ is a general tensor field of type (r,s), it is completely determined by
evaluation on all tensor fields ρ of type (s,r) which are products of one forms
and vector fields. We then define ∇Xγ by

(∇Xγ)(ρ) = X(γ(ρ))− γ(∇Xρ).

In the case that γ is itself a sum of products of one-forms and vector fields
this coincides with our old definition. Again this implies that ∇Xγ is a tensor.
Furthermore, contraction in any two positions in γ is dual (locally) to insertion
of
∑
θi⊗Ei into the corresponding positions in a tensor of type (s-1,r-1) where

the Ei form a basis locally of the vector fields at each point and the θi form the
dual basis. But

∇X(θi ⊗ Ei) = 0

since if the functions ai
j are defined by∇XEj =

∑
j a

i
jEi then∇Xθ

i = −
∑
ai

jθ
j

as follows from (3.12). This shows that (3.13) holds in general.
We can think of the covariant derivative as assigning to each tensor field γ

of type (r,s) a tensor field ∇γ of type (r,s+1), given by

∇γ(ρ⊗X) = ∇Xγ(ρ).

The tensor ∇γ is called the covariant differential of γ.
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3.6 Torsion.

Let ∇ be a connection, X and Y vector fields and f and g functions. Using
(3.1), (3.2), and the corresponding equations for Lie brackets we find

∇fX(gY )−∇gY (fX)− [fX, gY ] = fg (∇XY −∇Y X − [X,Y ]) ,

In other words the value of

τ(X,Y ) := ∇XY −∇Y X − [X,Y ]

at any point x depends only on the values X(x), Y (x) of the vector fields at x.
So τ defines a tensor field of type (1,2) in the sense that it assigns to any pair
of tangent vectors at a point, a third tangent vector at that point. This tensor
field is called the torsion tensor of the connection. So a connection has zero
torsion if and only if

∇XY −∇Y X = [X,Y ] (3.14)

for all pairs of vector fields X and Y . In terms of local coordinates, [∂i, ∂j ] = 0.
So

τ(∂i, ∂j) = ∇i∂j −∇j∂i =
∑

k

(
Γk

ij − Γk
ji

)
∂k.

Thus a connection has zero torsion if and only if its Christoffel symbols are
symmetric in i and j.

3.7 Curvature.

The curvature R = R(∇) of the connection ∇ is defined to be the map
V(M)3 → V(M) assigning to three vector fields X,Y, Z the value

RXY Z := [∇X ,∇Y ]Z −∇[X,Y ]Z. (3.15)

The expression [∇X ,∇Y ] occurring on the right in (3.15) is the commutator of
the two operators ∇X and ∇Y , that is [∇X ,∇Y ] = ∇X ◦ ∇Y −∇Y ◦ ∇X . We
first observe that R is a tensor, i.e. that the value of RXY Z at a point depends
only on the values of X,Y , and Z at that point. To see this we must show that

RfXgY hZ = fghRXY Z

for any three smooth functions f, g and h. For this it suffices to check this one
at a time, i.e. when two of the three functions are identically equal to one. For
example, if f ≡ 1 ≡ h we have

−RX,gY Z = ∇[X,gY ]Z −∇X∇gY Z +∇gY∇XZ

= (Xg)∇Y Z + g∇[X,Y ]Z − (Xg)∇X∇Y Z − g∇X∇Y Z + g∇Y∇XZ

= gRXY Z.
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Since R is anti-symmetric in X and Y we conclude that RfXY Z = fRXY Z.
Finally,

−RXY (hZ) = ([X,Y ]h)Z + h∇[X,Y ]Z −∇X((Y h)Z + h∇Y Z) +
∇Y ((Xh)Z + h∇XZ)

= hRXY Z + ([X,Y ]h− (XY − Y X)h)Z −Xh∇Y Z

−Y h∇XZ + Y h∇XZ +Xh∇Y Z

= hRXY Z.

Thus we get a curvature tensor (of type (1,3)) which assigns to every three
tangent vectors ξ, η, ζ at a point x the value

Rξηζ := (RXY Z)(x)

where X,Y, Z are any three vector fields with X(x) = ξ, Y (x) = η, Z(x) = ζ.
Alternatively, we speak of the curvature operator at the point x defined by

Rξη : TMx → TMx, Rξη : ζ 7→ Rξηζ.

As we mentioned, the curvature operator is anti-symmetric in ξ and η:

Rξη = −Rηξ.

The classical expression of the curvature tensor in terms of the Christoffel
symbols is obtained as follows: Since [∂k, ∂`] = 0,

R∂k∂`
∂j = ∇k(∇`∂j)−∇`(∇k∂j)

= −∇`

(∑
m

Γm
kj∂m

)
+∇k

(∑
m

Γm
`j∂r

)

= −
∑
m

(
∂

∂x`
Γm

kj∂m +
∑
m,r

Γm
kjΓ

r`m

)
∂r +

∑
m

(
∂

∂xk
Γm

`j∂m −
∑
m,r

Γm
`jΓ

r
km

)
∂r

=
∑

i

Ri
jk`∂i

where
Ri

jk` = − ∂

∂x`
Γi

kj +
∂

∂xk
Γi

`j −
∑
m

Γi
`mΓm

kj +
∑
m

Γi
kmΓm

`j . (3.16)

If the connection has zero torsion we claim that

Rξηζ +Rηζξ +Rζξη = 0, (3.17)

or, using the cyclic sum notation we introduced with the Jacobi identity, that

Cyc Rξηζ = 0.
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To prove this, we may extend ξ, η, and ζ to vector fields whose brackets all
commute (say by using vector fields with constant coefficients in a coordinate
neighborhood). Then

RXY Z = ∇X∇Y Z −∇Y∇XZ.

Therefore

Cyc RXY Z = Cyc∇X∇Y Z − Cyc∇Y∇XZ

= Cyc∇X∇ZY − Cyc∇X∇ZY

since making a cyclic permutation in an expression Cyc F (X,Y, Z) does not
affect its value. But the fact that the connection is torsion free means that we
can write the last expression as

Cyc ∇X [Y, Z] = 0

by our assumption that all Lie brackets vanish.QED

3.8 Isometric connections.

Suppose that M is a semi-Riemannian manifold, meaning that we are given
a smoothly varying non-degenerate scalar product 〈 , 〉x on each tangent space
TMx. Given two vector fields X and Y , we let 〈X,Y 〉 denote the function

〈X,Y 〉(x) := 〈X(x), Y (x)〉x.

We say that a connection ∇ is isometric for 〈 , 〉 if

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 (3.18)

for any three vector fields X,Y, Z. It is a sort of Leibniz’s rule for scalar prod-
ucts. If we go back to the definition of the derivative of a vector field along a
curve arising from the connection ∇, we see that (3.18) implies that

d

dt
〈Y,Z〉 = 〈Y ′, Z〉+ 〈Y, Z ′〉

for any pair of vector fields along a curve C. In particular, if Y and Z are
parallel along the curve, so that Y ′ = Z ′ = 0, we see that 〈Y,Z〉 is constant.
This is the key meaning of the condition that a connection be isometric: parallel
translation along any curve is an isometry of the tangent spaces.

3.9 Levi-Civita’s theorem.

This asserts that on any semi-Riemannian manifold there exists a unique con-
nection which is isometric and is torsion free. It is characterized by the Koszul
formula
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2〈∇V W,X〉 =

V 〈W,X〉+W 〈X,V 〉−X〈V,W 〉−〈V, [W,X]〉+〈W, [X,V ]〉+〈X, [V,W ]〉 (3.19)

for any three vector fields X,V,W . To prove Koszul’s formula, we apply the
isometric condition to each of the first three terms occurring on the right hand
side of (3.19). For example the first term becomes 〈∇V W,X〉+ 〈W,∇V X〉. We
apply the torsion free condition to each of the last three terms. For example
the last term becomes 〈X,∇V W − ∇WV 〉. There will be a lot of cancellation
leaving the left hand side. Since the vector field ∇V W is determined by knowing
its scalar product 〈∇V W,X〉 for all vector fields X, the Koszul formula proves
the uniqueness part of Levi-Civita’s theorem.

On the other hand, the right hand side of the Koszul formula is function
linear in X, i.e.

〈∇V W, fX〉 = f〈∇V W,X〉

as can be checked using the properties of ∇ and Lie bracket. So we obtain a
well defined vector field, ∇V W and it is routine to check that this satisfies the
conditions for a connection and is torsion free and isometric.

We can use the Koszul identity to derive a formula for the Christoffel symbols
in terms of the metric. First some standard notations: We will use the symbol
g to stand for the metric, so g is just another notation for 〈 , 〉. In a local
coordinate system we write

gij := 〈∂i, ∂j〉

so
g =

∑
ij

gijdx
i ⊗ dxj .

Here the gij are functions on the coordinate neighborhood, but we are suppress-
ing the functional dependence on the points in the notation. The metric g is
a (symmetric) tensor of type (0,2). It induces an isomorphism (at each point)
of the tangent space with the cotangent space, each tangent vector ξ going into
the linear function 〈ξ, ·〉 consisting of scalar product by ξ. By the above formula
the map is given by

∂i 7→
∑

j

gijdx
j .

This isomorphism induces a scalar product on the cotangent space at each point,
and so a tensor of type (2,0) which we shall denote by ĝ or sometimes by g ↑↑.
We write

gij := 〈dxi, dxj〉

so
ĝ =

∑
ij

gij∂i ⊗ ∂j .
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(The transition from the two lower indices to the two upper indices is the reason
for the vertical arrows notation.) The metric on the cotangent spaces induces a
map into its dual space which is the tangent space given by

dxi 7→
∑

gij∂j

and the two maps - from tangent spaces to cotangent spaces and vice versa -
are inverses of one another so ∑

k

gikgkj = δi
j ,

the “matrices” (gij) and gk`) are inverses.
Now let us substitute X = ∂m, V = ∂i,W = ∂j into the Koszul formula

(3.19). All brackets on the right vanish and we get

2〈∇i∂j , ∂m〉 = ∂i(gjm) + ∂j(gim)− ∂m(gij).

Since
∇i∂j =

∑
k

Γk
ij∂k

is the definition of the Christoffel symbols, the preceding equation becomes

2
∑

a

Γa
ijgam = ∂i(gjm) + ∂j(gim)− ∂m(gij).

Multiplying this equation by gmk and summing over m gives

Γk
ij =

1
2

∑
m

gkm

{
∂gjm

∂xi
+
∂gim

∂xj
− ∂gij

∂xm

}
. (3.20)

In principle, we should substitute this formula into (3.11) and solve to obtain
the geodesics. In practice this is a mess for a general coordinate system and
so we will spend a good bit of time developing other means (usually group
theoretical) for finding geodesics. However the equations are manageable in
orthogonal coordinates.

3.10 Geodesics in orthogonal coordinates.

A coordinate system is called orthogonal if

gij = 0, i 6= j.

If we are lucky enough to have an orthogonal coordinate system the equations
for geodesics take on a somewhat simpler form. First notice that (3.20) becomes

Γk
ij =

1
2
gkk

{
∂gjk

∂xi
+
∂gik

∂xj
− ∂gij

∂xk

}
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So (3.11) becomes

d2xk

dt2
+ gkk

∑
i

∂gkk

∂xi

dxk

dt

dxi

dt
− 1

2
gkk

∑
i

∂gii

∂xk

dxi

dt

dxi

dt
= 0.

If we multiply this equation by gkk and bring the negative term to the other
side we obtain

d

dt

(
gkk

dxk

dt

)
=

1
2

∑
i

∂gii

∂xk

(
dxi

dt

)2

(3.21)

as the equations for geodesics in orthogonal coordinates.

3.11 Curvature identities.

The curvature of the Levi-Civita connection satisfies several additional identities
beyond the two curvature identities that we have already discussed. Let us
choose vector fields X,Y, V with vanishing brackets. We have

−〈RXY V, V 〉 = −〈∇X∇Y V, V 〉+ 〈∇Y∇XV, V 〉
= Y 〈∇XV, V 〉 − 〈∇XV,∇Y V 〉 −X〈∇Y V, V 〉+ 〈∇Y V,∇XV 〉

=
1
2
Y X〈V, V 〉 − 1

2
XY 〈V, V 〉

=
1
2
[X,Y ]〈V, V 〉

= 0.

This implies that for any three tangent vectors we have

〈Rξηζ, ζ〉 = 0

and hence by polarization that for any four tangent vectors we have

〈Rξηυ, ζ〉 = −〈υ,Rξηζ〉. (3.22)

This equation says that the curvature operator Rξη acts as an infinitesimal
orthogonal transformation on the tangent space.

The last identity we want to discuss is the symmetry property

〈Rξηυ, ζ〉 = 〈Rυζξ, η〉. (3.23)

The proof consists of starting with the identity

CycRη,υξ = 0

and taking the scalar product with ζ to obtain

〈Cyc Rη,υξ, ζ〉 = 0.
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This is an equation involving three terms. Take the cyclic permutation of the
four vectors to obtain four equations like this involving twelve terms in all.
When we add the four equations eight of the terms cancel in pairs and the
remaining terms give (3.23). We summarize the symmetry properties of the
Riemann curvature:

• Rξη = −Rηξ

• 〈Rξηυ, ζ〉 = −〈υRξηζ〉

• Rξηζ +Rηζξ +Rζξη = 0

• 〈Rξηυ, ζ〉 = 〈Rυζξ, η〉.

3.12 Sectional curvature.

Let V is a vector space with a non-degenerate symmetric bilinear form 〈·, ·〉. A
subspace is called non-degenerate if the restriction of the 〈·, ·〉 to this sub-
space is non-degenerate. (If 〈·, ·〉 is positive definite, then all subspaces are
non-degenerate.) A two dimensional subspace Π is non-degenerate if and only
if for any basis v, w of Π the “area ”

Q(v, w)) := 〈v, v〉〈w,w〉 − 〈v, w〉2

does not vanish.
Let Π be a non-degenerate plane (=two dimensional subspace) of the tangent

space TMx of a semi-Riemannian manifold. Then its sectional curvature is
defined as

K(Π) :=
−〈Rvwv, w〉
Q(v, w)

. (3.24)

It is easy to check that this is independent of the choice of basis v, w.

3.13 Ricci curvature.

If we hold ξ ∈ TMx and η ∈ TMx fixed in Rξvη then the map

v 7→ Rξvη v ∈ TMx

is a linear map of TMx into itself. Its trace (which is biinear in ξ and η) is
known as the Ricci curvature tensor.

Ric(ξ, η) := tr[v 7→ Rx,vη]. (3.25)

Ricci curvature plays a key role in general relativity because it is the Ricci
curvature rather than than the full Riemann curvature which enters into the
Einstein field equations.
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3.14 Bi-invariant metrics on a Lie group.

The simplest example of a Riemman manifold is Euclidean space, where the
geodesics are straight lines and all curvatures vanish. We may think of Euclidean
space as a commutative Lie group under addition, and view the straight lines as
translates of one parameter subgroups (lines through the origin). An easy but
important generalization of this is when we consider bi-invariant metrics on a
Lie group, a concept we shall explain below. In this case also, the geodesics are
the translates of one parameter subgroups.

3.14.1 The Lie algebra of a Lie group.

Let G be a Lie group. This means that G is a group, and is a smooth manifold
such that the multiplication map G × G → G is smooth, as is the map inv
:G→ G sending every element into its inverse:

inv : a 7→ a−1, a ∈ G.

Until now the Lie groups we studied were given as subgroups of Gl(n). We can
continue in this vein, or work with the more general definition just given. We
have the left action of G on itself

La : G→ G, b 7→ ab

and the right action
Ra : G→ G, b 7→ ba−1.

We let g denote the tangent space to G at the identity:

g = TGe.

We identify g with the space of all left invariant vector fields on G, so ξ ∈ g
is identified with the vector field X which assigns to every a ∈ G the tangent
vector

d(La)eξ ∈ TGa.

We will alternatively use the notation X,Y or ξ, η for elements of g.
The left invariant vector field X generates a one parameter group of trans-

formations which commutes with all left multiplications and so must consist
of a one parameter group of right multiplications. In the case of a subgroup
of Gl(n), where g was identified with a subspace of of the space of all n × n
matrices, we saw that this was the one parameter group of transformations

A 7→ A exp tX,

i.e. the one parameter group
Rexp−tX .

So we might as well use this notation in general: exp tX denotes the one parame-
ter subgroup of G obtained by looking at the solution curve through e of the left
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invariant vector field X, and then the one parameter group of transformations
generated by the vector field X is Rexp−tX .

Let X and Y be elements of g thought of as left invariant vector fields, and
let us compute their Lie bracket as vector fields. So let

φt = Rexp−tX

be the one parameter group of transformations generated by X. According to
the general definition, the Lie bracket [X,Y ] is obtained by differentiating the
time dependent vector field φ∗tY at t = 0. By definition, the pull-back φ∗tY is
the vector field which assigns to the point a the tangent vector

(dφt)−1
a Y (φt(a)) = (dRexp tX)aY (a(exp tX)). (3.26)

In the case that G is a subgroup of the general linear group, this is precisely the
left invariant vector field

a 7→ a(e exp tX)Y (exp−tX).

Differentiating with respect to t and setting t = 0 shows that the vector field
[X,Y ] is precisely the left invariant vector field corresponding to the commutator
of the two matrices X and Y .

We can mimic this computation for a general Lie group, not necessarily given
as a subgroup of Gl(n): First let us record the special case of (3.26) when we
take a = e:

(dφt)−1
e Y (φt(e)) = (dRexp tX)Y (exp tX)). (3.27)

For any a ∈ G we let Aa denote conjugation by the element a ∈ G, so

Aa : G→ G,Aa(b) = aba−1.

We have Aa(e) = e and Aa carries one-parameter subgroups into one param-
eter subgroups. In particular the differential of Aa at TGe = g is a linear
transformation of g which we shall denote by Ada:

d(Aa)e =: Ada : TGe → TGe.

We have
Aa = La ◦Ra = Ra ◦ La.

So if Y is the left invariant vector field on G corresponding to η ∈ TGe = g, we
have dLa(η) = Y (a) and so

d(Aa)eη = d(Ra)a ◦ d(La)eη = d(Ra)aY (a).

Set a = exp tX, and compare this with (3.27). Differentiate with respect to t
and set t = 0. We see that the left invariant vector field [X,Y ] corresponds to
the element of TGe obtained by differentiating Adexp tX η with respect to t and
setting t = 0. In symbols, we can write this as

d

dt
Adexp tX |t=0 = ad(X) where ad(X) : g → g, ad(X)Y = [X,Y ]. (3.28)
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Now ad(X) as defined above is a linear transformation of g. So we can consider
the corresponding one parameter group exp t ad(X) of linear transformations
of g (using the usual formula for the exponential of a matrix). But (3.28)
says that Adexp tX is a one parameter group of linear transformations with the
same derivative, ad(X) at t = 0. The uniqueness theorem for linear differential
equations then implies the important formula

exp(t ad(X)) = Adexp tX . (3.29)

3.14.2 The general Maurer-Cartan form.

If v ∈ TGa is tangent vector at the point a ∈ G, there will be a unique left
invariant vector field X such that X(a) = v. In other words, there is a linear
map

ωa : TGa → g

sending the tangent vector v to the element ξ = ωa(v) ∈ g where the left
invariant vector field X corresponding to ξ satisfies X(a) = v. So we have
defined a g valued linear differential form ω identified the tangent space at any
a ∈ G with g. If

dLbv = w ∈ TGba

then X(ba) = w since X(v) = v and X is left invariant. In other words,

ωLba ◦ dLb = ωa,

or, what amounts to the same thing

L∗bω = ω

for all b ∈ G. The form ω is left invariant. When we proved this for a subgroup of
Gl(n) this was a computation. But in the general case, as we have just seen, it is
a tautology. We now want to establish the generalization of the Maurer-Cartan
equation (2.9) which said that for subgroups of Gl(n) we have

dω + ω ∧ ω = 0.

Since we no longer have, in general, the notion of matrix multiplication which
enters into the definition of ω ∧ ω, we must first must rewrite ω ∧ ω in a form
which generalizes to an arbitrary Lie group.

So let us temporarily consider the case of a subgroup of Gl(n). Recall that
for any two form τ and a pair of vector fields X and Y we write τ(X,Y ) =
i(Y )i(X)τ . Thus

(ω ∧ ω)(X,Y ) = ω(X)ω(Y )− ω(Y )ω(X),

the commutator of the two matrix valued functions, ω(X) and ω(Y ). Consider
the commutator of two matrix valued one forms, ω and σ,

ω ∧ σ + σ ∧ ω
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(according to our usual rules of superalgebra). We denote this by

[ω∧, σ].

In particular we may take ω = σ to obtain

[ω∧, ω] = 2ω ∧ ω.

So we can rewrite the Maurer-Cartan equation for a subgroup of Gl(n) as

dω +
1
2
[ω∧, ω] = 0. (3.30)

Now for a general Lie group we do have the Lie bracket map

g× g → g.

So we can define the two form [ω∧, ω]. It is a g valued two form which satisfies

i(X)[ω∧, ω] = [X,ω]− [ω,X]

for any left invariant vector field X. Hence

[ω∧, ω](X,Y ) := i(Y )i(X)[ω∧, ω] = i(Y ) ([X,ω]− [ω,X])

= [X,Y ]− [Y,X] = 2[X,Y ]

for any pair of left invariant vector fields X and Y . So to prove (3.30) in general,
we must verify that for any pair of left invariant vector fields we have

dω(X,Y ) = −ω([X,Y ]).

But this is a consequence of our general formula (2.3) for the exterior derivative
which in our case says that

dω(X,Y ) = Xω(Y )− Y ω(X)− ω([X,Y ]).

In our situation the first two terms on the right vanish since, for example,
ω(Y ) = Y = η a constant element of g so that Xω(Y ) = 0 and similarly
Y ω(X) = 0.

3.14.3 Left invariant and bi-invariant metrics.

Any non-degenerate scalar product, 〈 , 〉, on g determines (and is equivalent to)
a left invariant semi-Riemann metric on G via the left-identification dLa : g =
TGe → TGa, ∀ a ∈ G,

Since Aa = La ◦ Ra, the left invariant metric, 〈 , 〉 is right invariant if and
only if it is Aa invariant for all a ∈ G, which is the same as saying that 〈 , 〉 is
invariant under the adjoint representation of G on g, i.e. that

〈AdaY,AdaZ〉 = 〈Y, Z〉, ∀Y,Z ∈ g, a ∈ G.
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Setting a = exp tX, X ∈ g, differentiating with respect to t and setting t = 0
gives

〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0, ∀X,Y, Z ∈ g. (3.31)

If every element of G can be written as a product of elements of the form
exp ξ, ξ ∈ g ( which will be the case if G is connected), this condition implies
that 〈 , 〉 is invariant under Ad and hence is invariant under right and left
multiplication. Such a metric is called bi- invariant.

Let inv denote the map sending every element into its inverse:

inv : a 7→ a−1, a ∈ G.

Since inv exp tX = exp(−tX) we see that

d inve = −id .

Also
inv = Ra−1 ◦ inv ◦ La−1

since the right hand side sends b ∈ G into

b 7→ a−1b 7→ b−1a 7→ b−1.

Hence d inva : TGa → TGa−1 is given, by the chain rule, as

dRa−1 ◦ dinv e ◦ dLa−1 = −dRa−1 ◦ dLa−1

implying that a bi-invariant metric is invariant under the map inv. Conversely,
if a left invariant metric is invariant under inv then it is also right invariant,
hence bi-invariant since

Ra = inv ◦ L−1
a ◦ inv .

3.14.4 Geodesics are cosets of one parameter subgroups.

The Koszul formula simplifies considerably when applied to left invariant vector
fields and bi-invariant metrics since all scalar products are constant, so their
derivatives vanish, and we are left with

2〈∇XY, Z〉 = −〈X, [Y, Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X,Y ]〉

and the first two terms cancel by (9.50). We are left with

∇XY =
1
2
[X,Y ]. (3.32)

Conversely, if 〈 , 〉 is a left invariant metric for which (9.51) holds, then

〈X, [Y,Z]〉 = 2〈X,∇Y Z〉
= −2〈∇Y X,Z〉
= −〈[Y,X], Z〉
= 〈[X,Y ], Z〉
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so the metric is bi-invariant.
Let α be an integral curve of the left invariant vector field X. Equation

(9.51) implies that α′′ = ∇XX = 0 so α is a geodesic. Thus the one-parameter
groups are the geodesics through the identity, and all geodesics are left cosets
of one parameter groups. (This is the reason for the name exponential map in
Riemannian geometry which we shall study in Chapter V.)

In Chapter VIII we will study Riemannian submersions. It will emerge from
this study that if a we have a quotient space B = G/H of a group with a bi-
invariant metric (satisfying some mild conditions), then the geodesics on B in
the induced metric are orbits of certain one parameter subgroups. For example,
the geodesics on spheres are the great circles.

3.14.5 The Riemann curvature of a bi-invariant metric.

We compute the Riemann curvature of a bi-invariant metric by applying the
definition (3.15) to left invariant vector fields:

RXY Z =
1
4
[X, [Y, Z]]− 1

4
[Y, [X,Z]]− 1

2
[[X,Y ], Z]

Jacobi’s identity implies the first two terms add up to 1
4 [[X,Y ], Z] and so

RXY Z = −1
4
[[X,Y ], Z]. (3.33)

3.14.6 Sectional curvatures.

In particular

〈RXY X,Y 〉 = −1
4
〈[[X,Y ], X], Y 〉 = −1

4
〈[X,Y ], [X,Y ]〉

so

K(X,Y ) =
1
4
||[X,Y ]||2

||X ∧ Y ||2
. (3.34)

3.14.7 The Ricci curvature and the Killing form.

Recall that for each X ∈ g the linear transformation of g consisting of bracketing
on the left by X is called ad X. So

ad X : g → g, ad X(V ) := [X,V ].

We can thus write our formula for the curvature as

RXV Y =
1
4
(ad Y )(ad X)V.

Now the Ricci curvature was defined as

Ric (X,Y ) = tr [V 7→ RXV Y ].
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We thus see that for any bi-invariant metric, the Ricci curvature is always given
by

Ric =
1
4
B (3.35)

where B, the Killing form, is defined by

B(X,Y ) := tr (ad X)(ad Y ). (3.36)

The Killing form is symmetric, since tr (AC) = tr CA for any pair of linear
operators. It is also invariant. Indeed, let µ : g → g be any automorphism of
g, so µ([X,Y ]) = [µ(X), µ(Y )] for all X,Y ∈ g. We can read this equation as
saying

ad (µ(X))(µ(Y )) = µ(ad(X)(Y ))

or
ad (µ(X)) = µ ◦ ad Xµ−1.

Hence
ad (µ(X))ad (µ(Y )) = µ ◦ ad Xad Y µ−1.

Since trace is invariant under conjugation, it follows that

B(µ(X), µ(Y )) = B(X,Y ).

Applied to µ = exp(tad Z) and differentiating at t = 0 shows thatB([Z,X], Y )+
B(X, [Z, Y ]) = 0.

So the Killing form defines a bi-invariant symmetric bilinear form on G. Of
course it need not, in general, be non-degenerate. For example, if the group
is commutative, it vanishes identically. A group G is called semi-simple if its
Killing form is non-degenerate. So on a semi-simple Lie group, we can always
choose the Killing form as the bi-invariant metric. For such a choice, our formula
above for the Ricci curvature then shows that the group manifold with this
metric is Einstein, i.e. the Ricci curvature is a multiple of the scalar product.

Suppose that the adjoint representation of G on g is irreducible. Then g can
not have two invariant non-degenerate scalar products unless one is a multiple
of the other. In this case, we can also conclude from our formula that the group
manifold is Einstein.

3.14.8 Bi-invariant forms from representations.

Here is a way to construct invariant scalar products on a Lie algebra g of a
Lie group G. Let ρ be a representation of G. This means that ρ is a smooth
homomorphism of G into Gl(n,R) or Gl(n,C). This induces a representation
ρ̇ of g by

ρ̇(X) :=
d

dt
ρ(exp tX)|t=0.

So
ρ̇ : g → gl(n)
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where gl(n) is the Lie algebra of Gl(n), and

ρ̇ (X.Y ) = [ρ̇(X), ρ̇(Y )]

where the bracket on the right is in gl(n). More generally, a linear map ρ̇ : g →
gl(n,C) or gl(n,R) satisfying the above identity is called a representation of
the Lie algebra g. Every representation of G gives rise to a representation of
g but not every representation of g need come from a representation of G in
general.

If ρ̇ is a representation of g, with values in gl(n,R), we may define

〈X,Y 〉g := tr ρ̇(X)ρ̇(Y ).

This is real valued, symmetric in X and Y , and

〈[X,Y ], Z〉g + 〈Y,X,Z〉g =

tr (ρ̇(X)ρ̇(Y )ρ̇(Z)− ρ̇(Y )ρ̇(X)ρ̇(Z) + ρ̇(Y )ρ̇(X)ρ̇(Z)− ρ̇(Y )ρ̇(Z)ρ̇(X)) = 0.

So this is invariant. Of course it need not be non-degenerate.
A case of particular interest is when the representation ρ̇ takes values in

u(n), the Lie algebra of the unitary group. An element of u(n) is a skew adjoint
matrix, i.e. a matrix of the form iA where A = A∗ is self adjoint. If A = A∗

and A = (aij) then

trA2 = trAA∗ =
∑
i.j

aijaji =
∑
i.j

aijaij =
∑
ij

|aij |2

which is positive unless A = 0. So

− tr(iA)(iA)

is positive unless A = 0. This implies that if ρ̇ : g → u(n) is injective, then the
form

〈X,Y 〉 = − tr ρ̇(X)ρ̇(Y )

is a positive definite invariant scalar product on g.
For example, let us consider the Lie algebra g = u(2) and the representation

ρ̇ of g on the exterior algebra of C2. We may decompose

∧(C2) = ∧0(C2)⊕ ∧1(C2)⊕ ∧2(C2)

and each of the summands is invariant under our representation. Every element
of u(2) acts trivially on ∧0(C2) and acts in its standard fashion on ∧1(C2) =
C2. Every element of u(2) acts via multiplication by its trace on ∧2(C2) so in
particular all elements of su(2) act trivially there. Thus restricted to su(2), the
induced scalar product is just

〈X,Y 〉 = − trXY, X, Y ∈ su(2),

while on scalar matrices, i.e. matrices of the form S = riI we have

〈S, S〉 = − tr ρ̇(S)2 = 2r2 + (2r)2 = 6r2 = −3 trS2 = −3
2
(trS)2.
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3.14.9 The Weinberg angle.

The preceding example illustrates the fact that if the adjoint representation of
g is not irreducible, there may be more than a one parameter family of invariant
scalar products on g. Indeed the algebra u(2) decomposes as a sum

u(2) = su(2)⊕ u(1)

of subalgebras, where u(1) consists of the scalar matrices (which commute with
all elements of u(2)). It follows from the invariance condition that u(1) must be
orthogonal to su(2) under any invariant scalar product. Each of these summands
is irreducible under the adjoint representation, so the restriction of any invariant
scalar product to each summand is determined up to positive scalar multiple,
but these multiples can be chosen independently for each summand. So there
is a two parameter family of choices.

In the physics literature it is conventional to write the most general invariant
scalar product on u(2) as

〈A,B〉 = − 2
g2
2

tr
(
A− 1

2
(trA)I

)(
B − 1

2
(trB)I

)
+− 1

g2
1

trA trB

where g1 and g2 are sometimes called “coupling strengths”. The first summand
vanishes on u(1) and the second summand vanishes on su(2). The Weinberg
angle θW is defined by

sin θW :=
g1√
g2
1 + g2

2

and plays a key role in Electro-Weak theory which unifies the electromagnetic
and weak interactions. In the current state of knowledge, there is no broadly
agreed theory that predicts the Weinberg angle. It is an input derived from
experiment. The data as of July 2002 from the Particle Data Group gives a
value of

sin2 θW = 0.23113... .

Notice that the computation that we did from the exterior algebra has

g2
1 =

2
3

and g2
2 = 2

so

sin2 θW =
2
3

2
3 + 2

= .25 .

Of course several quite different representations will give the same metric or
Weinberg angle.

3.15 Frame fields.

By a frame field we mean an n-tuplet E = (E1, . . . , En) of vector fields (defined
on some neighborhood) whose values at every point form a basis of the tangent
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space at that point. These then define a dual collection of differential forms

θ =

 θ1

...
θn


whose values at every point form the dual basis. For example, a coordinate sys-
tem x1, . . . , xn provides the frame field ∂1, . . . , ∂n with dual forms dx1, · · · , dxn.
But the use of more general frame fields allows for flexibility in computation.

A frame field is called “orthonormal” if 〈Ei, Ej〉 ≡ 0 for i 6= j and
〈Ei, Ei〉 ≡ εi where εi = ±1 . For example, applying the Gram-Schmidt
procedure to an arbitrary frame field for a positive definite metric yields an
orthonormal one.

3.16 Curvature tensors in a frame field.

In terms of a frame field the curvature tensor is given as∑
Ri

jk`Eiθ
kθ`θj where Ri

jk` = θi(REkE`
Ej).

The Ricci tensor, which as we mentioned, plays a key role in general relativity,
takes the form

Ric =
∑

Rijθ
iθj where Rij = Ric(Ei, Ej) :=

∑
Rm

imj .

If the frame is orthonormal then for any pair of vector fields V,W we have

Ric(V,W ) =
∑

εm〈RV Em
Em,W 〉.

A manifold is called Ricci flat if its Ricci curvature vanishes.
The scalar curvature S is defined as

S :=
∑

gijRij .

3.17 Frame fields and curvature forms.

Let M be a semi-Riemannian manifold. Let E1, . . . , En be an “orthonormal”
frame field defined on some open subset of M . (In order not to clutter up the
notation we will not introduce a specific name for the domain of definition of
our frame field.) This means the Ei are vector fields and

〈Ei, Ej〉 ≡ 0, i 6= j

while
〈Ei, Ei〉 ≡ εi, εi = ±1.
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Thus E1(p), . . . , En(p) form an “orthonormal” basis of the tangent space TMp

at each point p in the domain of definition. The dual basis of the cotangent
space then provides a family of linear differential forms, θ1, . . . , θn. It follows
from the definition, that if v ∈ TMp then

〈v, v〉 = ε1
(
θ1(v)

)2
+ · · ·+ εn (θn(v))2 .

This equation, true at all points in the domain of definition of the frame field is
usually written as

ds2 = ε1(θ1)2 + · · ·+ εn(θn)2. (3.37)

Conversely, if θ1, . . . , θn is a collection of linear differential forms satisfying
(3.37) (defined on some open set) then the dual vector fields constitute an
”orthonormal” frame field.

On any manifold, we have the tautological tensor field of type (1,1) which
assigns to each tangent space the identity linear transformation. We will denote
this tautological tensor field by id. Thus for any p ∈M and any v ∈ TMp,

id(v) = v.

In terms of a frame field we have

id = E1 ⊗ θ1 + · · ·En ⊗ θn

in the sense that both sides yield v when applied to any tangent vector v in
the domain of definition of the frame field. We can say that the θi give the
expression for id in terms of the frame field and also introduce the “vector of
differential forms”

θ :=

 θ1

...
θn


as a shorthand for the collection of the θi.

For each i the Levi-Civita connection yields a tensor field ∇Ei, the covariant
differential of Ei with respect to the connection, and hence linear differential
forms ωi

j defined by
ωi

j(ξ) = θi(∇ξEj). (3.38)

So
∇ξEj =

∑
m

ωm
j (ξ)Em.

The first structure equation of Cartan asserts that

dθi = −
∑
m

ωi
m ∧ θm. (3.39)

To prove this, we apply the formula (2.3) which says that

dθ(X,Y ) = X(θ(Y ))− Y (θ(X))− θ([X,Y ])
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holds for any linear differential form θ and vector fields X and Y . We apply
this to θi, Ea, Eb to obtain

dθi(Ea, Eb) = Eaθ
i(Eb)− Ebθ

i(Ea)− θi([Ea, Eb]).

Since θi(Eb) and θi(Ea) = 0 or 1 are constants, the first two terms vanish and
so the left hand side of (3.39) when evaluated on (Ea, Eb) becomes

−θi([Ea, Eb]).

As to the right hand side we have[
−
∑

ωi
m ∧ θm

]
(Ea, Eb) =

(
i(Ea)

[
−
∑

ωj
m ∧ θm

])
(Eb)

=
[
−
∑

ωi
m(Ea)θm +

∑
θm(Ea)ωi

m

]
(Eb)

= −ωi
b(Ea) + ωi

a(Eb)
= −θi (∇Ea

(Eb)−∇Eb
(Ea))

= −θi([Ea, Eb]). QED

Notice that
ωi

j(ξ) = θi(∇ξEj) = εi〈∇ξEj , Ei〉.

Since
0 = d〈Ei, Ej〉

we have
εjω

j
i = −εiωi

j . (3.40)

In particular ωi
i = 0. If we introduce the “matrix of linear differential forms”

ω := (ωi
j)

we can write the first structural equations as

dθ + ω ∧ θ = 0.

For tangent vectors ξ, η ∈ TMp let
(
Ωi

j(ξ, η
)
) be the matrix of the curvature

operator Rξη with respect to the basis E1(p), . . . , En(p). So

Rξη(Ej)(p) =
∑

i

Ωi
j(ξ, η)Ei.

Since Rη,ξ = −Rξ,η, Ωi
j(ξ, η) = −Ωi

j(η, ξ) so the Ωi
j are exterior differential

forms of degree two.
Cartan’s second structural equation asserts that

Ωi
j = dωi

j +
∑
m

ωi
m ∧ ωm

j . (3.41)
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We have
REaEb

(Ej) =
∑

i

Ωi
j(Ea, Eb)Ei

by definition. We must show that the right hand side of (3.41) yields the same
result when we substitute Ea, Eb into the differential forms, multiply by Ei and
sum over i.

Write

REaEb
(Ej) = ∇Ea

(∇Eb
Ej)−∇Eb

(∇Ea
Ej)−∇[Ea,Eb]Ej .

Since ∇Eb
(Ej) =

∑
i ω

i
j(Eb)Ei we get

∇Ea
(∇Eb

Ej) =
∑

Ea[ωi
j(Eb)]Ei +

∑
ωm

j (Eb)∇Ea
Em

=
∑

Ea[ωi
j(Eb)]Ei +

∑
i,m

ωm
j (Eb)ωi

m(Ea)Ei

∇Eb
(∇Ea

Ej) =
∑

Eb[ωi
j(Ea)]Ei +

∑
i,m

ωm
j (Ea)ωi

m(Eb)Ei

∇[Ea,Eb]Ej =
∑

ωi
j([Ea, Eb])Ej so

REaEb
Ej =

∑
i

[
Eaω

i
j(Eb)− Ebω

i
j(Ea)− ωi

j([Ea, Eb])
]
Ei

+
∑
m,i

[
ωi

m(Ea)ωm
j (Eb)− ωi

m(Eb)ωm
j (Ea)

]
Ei.

The first expression in square brackets is the value on Ea, Eb of dωi
j by (2.3) while

the second expression in square brackets is the value on Ea, Eb of
∑
ωi

m ∧ ωm
j .

This proves Cartan’s second structural equation.
We can write the two structural equations as

dθ + ω ∧ θ = 0 (3.42)
dω + ω ∧ ω = Ω (3.43)

3.18 Cartan’s lemma.

We will show that the equations (3.42) and (3.40) determine the ωi
j . First a

result in exterior algebra:

Lemma 1 Let x1, . . . , xp be linearly independent elements of a vector space, V ,
and suppose that y1, . . . yp ∈ V satisfy

x1 ∧ y1 + · · ·xp ∧ yp = 0.

Then

yj =
p∑

k=1

Ajkxk with Ajk = Akj .
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Proof. Choose xp+1, . . . , xn if p < n so as to obtain a basis of V and write

yi =
p∑

j=1

Aijxj +
n∑

k=p+1

Bikxk.

Substituting into the equation of the lemma gives∑
i<j≤p

(Aij −Aji)xi ∧ xj +
∑

i≤p<k

Bikxi ∧ xk = 0.

Since the xi ∧ x`, i < ` form a basis of ∧2(V ), we conclude that Bik = 0 and
Aij = Aji which is the content of the lemma.

Suppose that ω and ω′ are two matrices of one forms which satisfy (3.39).
Then their difference, σ := ω − ω′ satisfies σ ∧ θ = 0. Applying the lemma we
conclude that

σi
k =

∑
Ai

jkθ
j , Ai

jk = Ai
kj .

If we set
Bi

jk = εiA
i
jk

and if both ω and ω′ satisfy (3.40) so that σ does as well, then

Bi
jk = Bi

kj and Bi
jk = −Bj

ki.

We claim that these two equations imply that all the Bi
jk = 0 and hence that

σ = 0. Indeed,

Bi
jk = Bi

kj = −Bk
ij = Bj

ki

= Bj
ik = −Bi

jk.

The upshot is that if we have found ω satisfying (3.42) and (3.40) then we know
that it is the matrix of connection forms.

3.19 Orthogonal coordinates on a surface.

If n = 2 there is only one independent linear differential form in ω namely

ω2
1 = −ε1ε2ω1

2 .

Suppose that (u, v) are orthogonal coordinates on the surface which means that

〈∂u, ∂v〉 ≡ 0.

Set e :=
√
|E| and g :=

√
|G| where

E := 〈∂u, ∂u〉 := ε1e
2, G := 〈∂v, ∂v〉 := ε2g

2.

The frame field
E1 :=

1
e
∂u, E2 :=

1
g
∂v
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is “orthonormal” with dual frame given by

θ1 = edu, θ2 = gdv.

Taking exterior derivatives yields

dθ1 = evdv ∧ du = −(ev/g)du ∧ θ2

dθ2 = gudu ∧ dv = −(gu/e)du ∧ θ1.

Hence
ω1

2 = (ev/g)du− ε1ε2(gu/e)dv

by the uniqueness of the solution to the Cartan equations. In two dimensions
the second structural equation reduces to

Ω1
2 = dω1

2

and we compute

dω1
2 = −[(ev/g)v + ε1ε2(gu/e)u]du ∧ dv = − 1

eg
[(ev/g)v + ε1ε2(gu/e)u]θ1 ∧ θ2.

The sectional curvature (=the Gaussian curvature) is then given by

K = ε1Ω1
2(E1, E2) = − 1

eg
[(ev/g)v + ε1ε2(gu/e)u]. (3.44)

We obtained this formula in the positive definite case by much more complicated
means in the first chapter.

Exercises. 1.

3.20 The curvature of the Schwartzschild metric

We use polar coordinates on space and t for time so coordinates t, r, ϑ, φ and
introduce the shorthand notation

S := sinϑ, C := cosϑ.

We fix a positive real number M and assume that

r > 2M.

The Schwartzschild metric is given as

ds2 = −(θ0)2 + (θ1)2 + (θ2)2 + (θ3)2 where

θ0 =
√
hdt, h := 1− 2M

r

θ1 =
1√
h
dr

θ2 = rdϑ

θ3 = rSdφ
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1. Compute d
√
h and then each of the dθi, i = 0, 1, 2, 3.

2. Find the connection form matrix ω.

3. Find the curvature form matrix Ω = dω + ω ∧ ω.

4. Show that the Schwarzschild metric is Ricci flat.

5. Find the sectional curvatures of the “coordinate planes”, i.e. the planes
spanned by any two of ∂t, ∂r, ∂ϑ, ∂φ.

6. The space of the Schartzschild metric is the “twisted product” of the
“Schwartzschild plane” B spanned by r, t with the metric given by −(θ0)2+(θ1)2

0and the unit sphere S in the sense that the metric has the form

g == gB + r2gS .

From this fact alone (i.e. using non of the preceding computations) together
with Koszul’s formula show that

〈∇XY, Z〉 = 0

if X and Y are vector fields on B and Z is a vector field on S (all thought of as
vector fields on the full space).

Exercises 2.

3.21 Geodesics of the Schwartzschild metric.

The purpose of this problem set is to go through the details of two of the famous
results general relativity, the explanation of the advance of the perihelion of Mer-
cury and the deflection of light passing near the sun. (Einstein, 1915). In order
to get results in useful form, we shall explicitly include Newton’s gravitational
constant G

The equations for geodesics in a local coordinate system on a semi-Riemannian
manifold are

d2xk

ds2
+
∑
i,j

Γk
ij

dxi

ds

dxj

ds
= 0 (3.45)

where

Γk
ij :=

1
2

∑
m

gkm

(
∂gjm

∂xi
+
∂gim

∂xj
− ∂gij

∂xm

)
. (3.46)

One of the postulates of general relativity is that a “small” particle will
move along a geodesic in a four dimensional Lorentzian manifold whose met-
ric is determined by the matter distribution over the manifold. Here the word
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“small” is taken to mean that the effect of the mass of the particle on the metric
itself can be ignored. We can ignore the mass of a planet when the metric is
determined by the mass distribution of the stars. This notion of “small” or
“passive” is similar to that involved in the equations of motion of a charged
particle in an electromagnetic field. General electromagnetic theory says that
the particle itself affects the electromagnetic field, but for “small” particles we
ignore this and treat the particles as passively responding to the field. Similarly
here. We will have a lot to say about the philosophical underpinnings of the
postulate “small particles move along geodesics” when we have enough mathe-
matical machinery. The theory also specifies that if the particle is massive then
the geodesic is timelike, while if the particle has mass zero then the geodesic is
a null geodesic, i.e. lightlike.

The second component of the theory is how the distribution of matter de-
termines the metric. This is given by the Einstein field equations: Matter
distribution is described by a (possibly degenerate) symmetric bilinear form on
the tangent space at each point called the stress energy tensor, T . The Einstein
equations take the form G = 8πT where G is related to the Ricci curvature. In
particular, in empty space, the Einstein equations become G = 0.

Although the study of these equations is a huge enterprise, the solution for
the equations G = 0 in the exterior of a star of mass M which is “spherically
symmetric”, “stationary” and tends to the Minkowski metric at large distances
was found almost immediately by Schwarzschild. (The words in quotes need to
be more carefully defined.) This is the metric

ds2 := −hdt2 + h−1dr2 + r2dσ2 (3.47)

where
h(r) := 1− 2GM

r
(3.48)

where G is Newton’s gravitational constant and dσ2 is the invariant metric on
the ordinary unit sphere,

dσ2 = dθ2 + sin2 θdφ2. (3.49)

To be more precise, let PI ⊂ R2 consist of those pairs, (t, r) with

r > 2GM.

Let
N = PI × S2,

the set of all (t, r, q), r > 2GM, q ∈ S2. The coordinates (θ, φ) can be used on
the sphere with the north and south pole removed, and (3.49) is the local ex-
pression for the invariant metric of the unit sphere in terms of these coordinates.
Then the metric we are considering on N is given by (3.47) as above.

Notice that the structure of N is like that of a surface of revolution, with
the interval on the z−axis replaced by the two dimensional region, N , the circle
replaced by the sphere, and the radius of revolution, f , replaced by r2. I
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If we set x0 := t, x1 := r, x2 := θ, x3 := φ then

gij = 0, i 6= j (3.50)

while
g00 = −h, g11 = h−1, g22 = r2, g33 = r2 sin2 θ.

Recall that a system of coordinates in which a metric satisfies (3.50) is called
an orthogonal coordinate system. In such a coordinate system we have seen that
the geodesic equations are

d

ds

(
gkk

dxk

ds

)
=

1
2

∑
j

∂gjj

∂xk

(
dxj

ds

)2

. (3.51)

1. Show that for the Schwarzschild metric, (3.47), the equation involving g22
on the left is

d

ds

[
r2
dθ

ds

]
= r2 sin θ cos θ

(
dφ

ds

)2

.

Conclude from the uniqueness theorem for solutions of differential equations that
if θ(0) = π/2, θ̇(0) = 0 then θ(s) ≡ π/2 along the whole geodesic. Conclude
from rotational invariance that all geodesics must lie in a plane, i.e. by suitable
choice of poles of the sphere we can arrange that θ ≡ π/2.

2. With the above choice of spherical coordinates along the geodesic, show that
the g00 and g33 equations become

h
dt

ds
= E

r2
dφ

ds
= L

where E and L are constants. These constants are called the “energy” and the
“angular momentum”. Notice that for L > 0, as we shall assume, dφ/ds > 0,
so we can use φ as a parameter on the orbit if we like.

General principles of mechanics imply that there is a “constant of motion”
associated to every one parameter group of symmetries of the system. The
Schwarzschild metric is invariant under time translations t 7→ t + c and under
rotations φ 7→ φ+α. Under the general principles mentioned above, it turns out
that E corresponds to time translation and that L corresponds to φ 7→ φ+ α.

We now consider separately the case of a massive particle where we can
choose the parameter s so that 〈γ′(s), γ′(s)〉 ≡ 1 and massless particles for
which 〈γ′(s), γ′(s)〉 ≡ 0.
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3.21.1 Massive particles.

We can write the tangent vector, γ′(s) to the geodesic γ at the point s as

γ′(s) = ẋ0(s)
(

∂

∂x0

)
γ(s)

+ẋ1(s)
(

∂

∂x1

)
γ(s)

+ẋ2(s)
(

∂

∂x2

)
γ(s)

+ẋ3(s)
(

∂

∂x3

)
γ(s)

.

Let us assume that we use proper time as the parameterization of our geodesic
so that

〈γ′(s), γ′(s)〉γ(s) ≡ −1.

vskip.2in
3. Using this last equation and the results of problem 2, show that

E2 =
(
dr

ds

)2

+ (1 +
L2

r2
)h(r) (3.52)

along any geodesic.

Orbit Types.

We can write (3.52) as

E2 =
(
dr

ds

)2

+ V (r) (3.53)

where the effective potential V is given as

V (r) := 1− 2GM
r

+
L2

r2
− 2GML2

r3
.

The behavior of the orbit depends on the the relative size of L and GM . In
particular, (3.53) implies that on any orbit, r is restricted to an interval

I ⊂ {r : V (r) ≤ E2} such that r(0) ∈ I.

If we differentiate (3.53) we get

2
(
d2r

ds2

)(
dr

ds

)
= −V ′(r)

(
dr

ds

)
. (3.54)

In particular, a critical point of V , i.e. a point r0 for which V ′(r0) = 0, gives rise
to a circular orbit r ≡ r0. If R is a non-critical point of V for which V (R) = E2,
then R is a turning point - the orbit reaches the end point R of the interval I
and then turns around to move along I in the opposite direction.

Observe that V (2GM) = 0 and V (r) → 1 as r → ∞. To determine how V
goes from 0 to 1 on [2GM.∞) we compute

V ′(r) =
2
r4
(
GMr2 − L2r + 3GML2

)
(3.55)
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and the quadratic polynomial in r given by the expression in parenthesis has
discriminant

L2(L2 − 12G2M2).

If this discriminant is negative, there are no critical points, so V increase mono-
tonically form 0 to ∞. If this discriminant is positive there are two critical
points, r1 < r2. Since V ′(2GM) > 0, we see that r1 a local maximum and r2 a
local minimum. (We will ignore the exceptional case of discriminant zero.) In
the positive discriminant case we must distinguish between the cases where the
local maximum at r1 is not a global maximum, and when it is. Since V (r) → 1
as r → ∞ these two cases are distinguished by V (r1) < 1 and V (r1) > 1.
Ignoring non-generic cases we thus can classify the behavior of r(s) as:

• L2 < 12G2M2 so V has no critical points and hence is monotone increasing
on the interval [2GM,∞). The behavior of r(s) for s ≥ 0 subdivides
into four cases, all leading to “crashing” (i.e. reaching the Schwartzschild
boundary 2GM in finite s) or escape to infinity. The four possibilities
have to do with the sign of ṙ(0) and whether E2 < 1 or E2 > 1.

1. E2 < 1, ṙ(0) < 0. Since V decreases as r decreases, (3.53) implies
that ṙs, ṙ(0) < 0 for all s > 0 where it is defined. The particle crashes
into the barrier at 2GM in finite time.

2. E2 < 1, ṙ > 0. The orbit initially moves in the direction of increasing
r, reaches its maximum value where V (r) = E2, turns around and
crashes.

3. E2 > 1, ṙ > 0. The particle escapes to infinity.
4. E2 > 1, ṙ < 0. The particle crashes.

• 12G2M2 < L2 < 16G2M2. Here there are two critical points, but the
maximum value at r1 is < 1. There are now four types of intervals I,
depending on the value of E:

1. E2 < V (r1), r < r1. Here the interval I lies to the left of the
local maximum. The behavior will be like the first two cases above -
“crash” if ṙ(0) < 0 and turn around then crash if ṙ > 0.

2. E2 < V (r1), r > r1. the interval I now lies in a well to the right
of r1, and so the value of r has two turning points corresponding
to the end points of this interval. In other words the value of r
is bounded along the entire orbit. We call this a bound orbit.
In the “non-relativistic” approximation, this corresponds to Kepler’s
ellipses. In problems 4 and 5 below we will examine more closely how
this approximation works and derive Einstein’s famous calculation of
the advance of the perihelion of Mercury.

3. V (r1) < E2 < 1. The interval I is bounded on the right by the curve
and extends all the way to the left (up to the barrier at 2GM). The
behavior is again either direct crash or turn around and then crash
according to the sign of ṙ(0),
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4. E2 > 1. Now the possible behaviors are “crash” if ṙ(0) < 0 of escape
to infinity if ṙ(0) > 0.

• L > 4M . Now V (r1) > 1. Again there will be four possible intervals:

1. E2 < V (r1), r(0) < r1. This is an interval lying to the left of the
“potential barrier” and so yield either a crash or turn around then
crash orbit.

2. 1 < E2 < V (r1). Now I lies to the right of the barrier, but below
its peak, extending out to ∞ on the right. The orbit will escape to
infinity if ṙ(0) > 0 or turn around and then escape if ṙ(0) < 0.

3. E2 > 1. The interval I extends from 2GM to infinity and the orbit
is either crash or escape depending on the sign of ṙ(0).

4. V (r2) < E2 < 1. The interval now lies in a “well” to the right of the
peak at r1. We have again a bound orbit.

We are interested in the bound orbits with L > 0. According to problem 2
we can use φ as a parameter on such an orbit and by the second equation in
that problem we have

ṙ :=
dr

ds
=
dr/dφ

ds/dφ
=
L

r2
dr

dφ
.

Substituting this and the definition of h into (3.52) we get

E2 =
L2

r4

(
dr

dφ

)2

+
(

1 +
L2

r2

)(
1− 2GM

r

)
.

It is now convenient to introduce the variable

u :=
1
r

instead of r. We have

du

dφ
= − 1

r2

(
dr

dφ

)
= −u2 dr

dφ

so

E2 = L2

(
du

dφ

)2

+ (1 + L2u2)(1− 2GMu). (3.56)

We can rewrite this as(
du

dφ

)2

= 2GMQ, Q := u3 − 1
2GM

u2 + β1u+ β0 (3.57)

where β0 and β1 are constants, combinations of E,L, and GM :

β1 =
1
L2
, β0 =

1− E2

2GML
.
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Perihelion advance.

We will be interested in the case of bound orbits. In this case, a maximum
value, u1 along the orbit must be a root of the cubic polynomial, Q, as must
be a minimum, u2, since these are turning points where the left hand side of
(3.57) vanishes. Notice that these values do not depend on φ, being roots of
a given polynomial with constant coefficients. Since two of the roots of Q are
real, so is the third, and all three roots must add up to 1

2GM , the negative of
the coefficient of u2. Thus the third root is

1
2GM

− u1 − u2.

We thus have(
du

dφ

)2

= 2GM(u− u1)(u− u2)(u−
1

2GM
+ u1 + u2).

Since the first factor on the right is non-positive and the second non-negative,
the third is non-positive as the product must equal the non-negative expression
on the left. Furthermore, we will be interested in the region where r � 2GM
so

2GM(u+ u1 + u2) < 6GMu1 � 1.

We therefore have the following expressions for |dφ/du|:∣∣∣∣dφdu
∣∣∣∣ =

1√
(u1 − u)(u− u2)

· [1− 2GM(u+ u1 + u2)]
− 1

2 (3.58)

.=
1 +GM(u+ u1 + u2)√

(u1 − u)(u− u2)
(3.59)

.=
1√

(u1 − u)(u− u2)
(3.60)

Here (3.59) is obtained from (3.58) by ignoring terms which are quadratic or
higher in 2GM(u+u1+u2) and (3.60) is obtained from (3.58) by ignoring terms
which are linear in 2GM(u+ u1 + u2).

The strategy now is to observe that (3.60) is really the equation of an el-
lipse, whose Appolonian parameters, the latus rectum and the eccentricity, are
expressed in terms of u1 and u2. Then (3.59) is used to approximate the advance
in the perihelion of Keplerian motion associate to this ellipse.

4. Show that the ellipse

u =
1
`
(1 + e cosφ)

is a solution of (3.60) where e and ` are determined from

u1 =
1
`
(1 + e), u2 =

1
`
(1− e)
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so that the mean distance

a :=
1
2

(
1
u1

+
1
u2

)
=

`

1− e2
.

This is the approximating ellipse with the same maximum and minimum dis-
tance to the sun as the true orbit, if we choose our angular coordinate φ so that
the x− axis is aligned with the axis of the ellipse.

In principle (3.58) is in solved form; if we integrate the right hand side from
u1 to u2 and then back again, we will get the total change in φ across a complete
cycle. Instead, we will approximate this integral by replacing (3.58) by (3.59)
and then also make the approximate change of variables u = `−1(1 + e cosφ).

5. By making these approximations and substitutions show that the integral
becomes ∫ 2π

0

[1 +GM`−1(3 + cosφ]dφ = 2π +
6πGM
`

so the perihelion advance in one revolution is

6πGM
a(1− e2)

.

We have done these computations in units where the speed of light is one.
If we are given the various constants in conventional units, say

G = 6.67× 10−11m3/kg sec,

and the mass of the sun in kilograms

M = 1.99× 1030kg

we must replace G by G/c2 where c is the speed of light, c = 3 × 108 m/sec.
Then 2GM/c2

.= 1.5km. We may divide by the period of the planet to get the
rate of advance as

6πGM
ca(1− e2)T

.

If we substitute, for Mercury, the mean distance a = 5.768×1010m, eccentricity
e = 0.206 and period T = 88 days, and use the conversions

century = 36524 days
radian = [360/2π]degrees
degree = 3600′′

we get the famous value of 43.1”/century for the advance of the perihelion of
Mercury. This advance had been observed in the middle of the last century.
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Up until recently, this observational verification of general relativity was not
conclusive. The reason is that Newton’s theory is based on the assumption that
the mass of the sun is concentrated at a point. A famous theorem of Newton
says that the attraction due to a homogeneous ball (on a particle outside ) is
the same as if all the mass is concentrated at a point. But if the sun is not a
perfect sphere, or if its mass is not uniformly distributed, one would expect some
deviation from Kepler’s laws. The small effect of the advance of the perihelion
of Mercury might have an explanation in terms of Newtonian mechanics. In
the recent years, measurements from pulsars indicate large perihelion advances
of the order of degrees per year (instead of arc seconds per century) yielding a
striking confirmation of Einstein’s theory.

3.21.2 Massless particles.

We now have

γ′(s) = ẋ0(s)
(

∂

∂x0

)
γ(s)

+ẋ1(s)
(

∂

∂x1

)
γ(s)

+ẋ2(s)
(

∂

∂x2

)
γ(s)

+ẋ3(s)
(

∂

∂x3

)
γ(s)

.

〈γ′(s), γ′(s)〉γ(s) ≡ 0.

6. Using problem 2 verify that

E2 =
(
dr

ds

)2

+
(
L2

r2

)
h

and then
d2u

dφ2
+ u = 3GMu2. (3.61)

We will be interested in orbits which go out to infinity in both directions. For
large values of r, the right hand side is negligibly small, so we should compare
(3.61) with

d2u0

dφ2
+ u0 = 0

whose solutions are
u0 = a cosφ+ b sinφ

or
1 = ax+ by, x = r cosφ, y = r sinφ,

in other words straight lines. We might as well choose our angular coordinate
φ so that this straight line is parallel to the y− axis, i.e.

u0 = r−1
0 cosφ
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where r0 is the distance of closest approach to the origin. Suppose we are
interested in light rays passing the sun. The radius of the sun is about 7× 105

km while 2GM is about 1.5km. Hence in units where r0 is of order 1 the
expression 3GM is a very small quantity, call it ε. So write our equation as

u′′ + u = εu2, ε = 3GM. (3.62)

We solve this by the method of perturbation theory: look for a solution of the
form

u = u0 + εv + · · ·

where the error is of order ε2. We choose u0 as above to solve the equation
obtained by equating the zero-th order terms in ε.

7. Compare coefficients of ε to obtain the equation

v′′ + v =
1

2r20
(1 + cos 2φ)

and try a solution of the form v = a+b cos 2φ to find the solution of this equation
and so obtain the first order approximation

u =
1
r0

cosφ− ε

3r20
cos2 φ+

2ε
3r20

(3.63)

to (3.62).

The asymptotes as r → ∞ or u → 0 will be straight lines with angles
obtained by setting u = 0 in (3.63). This gives a quadratic equation for cosφ.

8. Remembering that cosine must be ≤ 1 show that up through order ε we have

cosφ = − 2ε
3r0

= −2GM
r0

.

Writing φ = π/2 + δ this gives sin δ = 2GM/r0 or approximately δ =
2GM/r0. This was for one asymptote. The same calculation gives the same
result for the other asymptote. Adding the two and passing to conventional
units gives

∆ =
4GM
c2r0

(3.64)

for the deflection. For light just grazing the sun this predicts a deflection of
1.75”. This was approximately observed in the expedition to the solar eclipse
of 1919.

Recent, remarkable, photographs from the Hubble space telescope have given
strong confirmation to Einstein’s theory from the deflection of light by dark
matter.



Chapter 4

The bundle of frames.

4.1 Connection and curvature forms in a frame
field.

Let E = (E1, . . . , En) be a(n orthonormal) frame field and

θ =

 θ1

...
θn


the dual frame field so

id = E1 ⊗ θ1 + · · ·+ En ⊗ θn

or

id = (E1, . . . , En)⊗

 θ1

...
θn


where id is the tautological tensor field which assigns the identity map to each
tangent space. We write this more succinctly as

id = Eθ.

The (matrix of) connection form(s) in terms of the frame field is then determined
by

dθ + ω ∧ θ = 0

and the curvature by
dω + ω ∧ ω = Ω.

We now repeat an argument that we gave when discussing the general Maurer
Cartan form: Recall that for any two form τ and a pair of vector fields X and
Y we write τ(X,Y ) = i(Y )i(X)τ . Thus

(ω ∧ ω)(X,Y ) = ω(X)ω(Y )− ω(Y )ω(X),

95
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the commutator of the two matrix valued functions, ω(X) and ω(Y ). Consider
the commutator of two matrix valued one forms, ω and σ,

ω ∧ σ + σ ∧ ω

(according to our usual rules of superalgebra). We denote this by

[ω∧, σ].

In particular we may take ω = σ to obtain

[ω∧, ω] = 2ω ∧ ω.

We can thus also write the curvature as

Ω = dω +
1
2
[ω∧, ω].

This way of writing the curvature has useful generalizations when we want to
study connections on principal bundles later on in this chapter.

4.2 Change of frame field.

Suppose that E′ is a second frame field whose domain of definition overlaps with
the domain of definition of E. On the intersection of their domains of definition
we must have

E′ = EC

is another frame field where C is a(n orthogonal) matrix valued function. Let
θ′ be the dual frame field of E′. On the common domain of definition we have

ECθ′ = E′θ′ = id = Eθ

so
θ = Cθ′.

Let ω′ be the connection form associated to θ′, so ω′ is determined (using
Cartan’s lemma ) by the anti-symmetry condition and

dθ′ + ω′ ∧ θ′ = 0.

Then
dθ = d(Cθ′) = dC ∧ θ′ + Cdθ′ = dCC−1 ∧ θ − Cω′C−1 ∧ θ

implying that
ω = −dCC−1 + Cω′C−1

or
ω′ = C−1ωC + C−1dC. (4.1)
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We have

ω′ ∧ ω′ = C−1ω ∧ ωC + C−1ω ∧ dC + C−1dCC−1 ∧ ωC + C−1dC ∧ C−1dC

while

dω′ = d(C−1) ∧ ωC + C−1dωC − C−1ω ∧ dC + d(C−1) ∧ dC.

Now it follows from

C−1C ≡ I

that

d(C−1) = −C−1dCC−1

and hence from the expression

Ω′ = ω′ ∧ ω′ + dω′

we get

Ω′ = C−1ΩC. (4.2)

Notice that this equation contains the assertion that the curvature is a tensor.
Indeed, recall that for any pair of tangent vectors ξ, η ∈ TMp the matrix Ω(ξ, η)
gives the matrix of the operator Rξη : TMp → TMp relative to the orthonormal
basis E1(p), . . . , En(p). Let ζ ∈ TMp be a tangent vector at p and let zi be the
coordinates of ζ relative to this basis so ζ = z1E1 + · · · znEn which we can write
as

ζ = E(p)z where z =

 z1

...
zn

 .

Then

Rξηζ = E(p)Ω(ξ, η)z.

If we use a different frame field E′ = EC then ζ = E′(p)z′ where z′ = C−1(p)z.
Equation (4.2) implies that

Ω′(ξ, η)z′ = C−1(p)Ω(ξ, η)z

which shows that

E′(p)Ω′(ξ, η)z′ = E(p)Ω(ξ, η)z.

Thus the transformation ζ 7→ E(p)Ω(ξ, η)z is a well defined linear transforma-
tion. So if we did not yet know that Rξη is a well defined linear transformation,
we could conclude this fact from (4.2).
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4.3 The bundle of frames.

We will now make a reinterpretation of the arguments of the preceding section
which will have far reaching consequences. Let O(M) denote the set of all
“orthonormal” bases of all TMp. So a point, E , of O(M) is an “orthonormal”
basis of TMp for some point p ∈M , and we will denote this point by π(E). So

π : O(M) →M, E is an o.n. basis of TMπ(E)

assigns to each E the point at which it is the orthonormal basis.
Suppose that E is a frame field defined on an open set U ⊂ M . If p ∈ U ,

and π(E) = p, then there is a unique “orthogonal” matrix A such that

E = E(p)A.

We will denote this matrix A by φ(E). (If we want to make the dependence on
the frame field explicit, we will write φE instead of φ.) Thus

E = E(π(E))φ(E).

This gives an identification

ψ : π−1(U) → U ×G, ψ(E) = (π(E), φ(E)) (4.3)

where G denotes the group of all “orthogonal” matrices. It follows from the
definition that

φ(EB) = φ(E)B, ∀B ∈ G. (4.4)
Let E′ be a second frame field defined on an open set U ′. We have a map

C : U ∩ U ′ → G

such that
E′ = EC

as in the last section. Thus

E = EφE(E) = EC (π(E))φE′(E)

so
φEφ

−1
E′ = C ◦ π. (4.5)

This shows that the identifications given by (4.3) define, in a consistent way, a
manifold structure on O(M). The manifold O(M) together with the action of
the “orthogonal group” G by “multiplication on the right”

RA : E 7→ E ◦A−1

and the differentiable map π : O(M) →M is called the bundle of (orthonor-
mal) frames.

We will now define forms

ϑ =

 ϑ1

...
ϑn

 and ω = (ωi
j)

on O(M):
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4.3.1 The form ϑ.

Let ξ ∈ T (O(M))E be a tangent vector at the point E ∈ O(M). Then dπE(ξ) is
a tangent vector to M at the point π(E):

dπ(ξ)E ∈ TMπ(E).

As such, the vector dπE(ξ) has coordinates relative to the basis, E of TMπ(E)

and these coordinates depend linearly on ξ. So we may write

dπE(ξ) = ϑ1(ξ)E1 + · · ·ϑn(ξ)En

defining the forms ϑi. As usual, we write this more succinctly as

dπ = Eϑ.

4.3.2 The form ϑ in terms of a frame field.

Let v ∈ T (O(M))E be a tangent vector at the point E ∈ O(M). Assume that
π(E) lies in the domain of definition of a frame field E and that E = E(p)A
where p = π(E). Let us write dπ(v) instead of dπE(v) so as not to overburden
the notation. We have

dπ(v) = E(p)θ(dπ(v)) = Eϑ(v) = E(p)Aϑ(v)

so
Aϑ(v) = θ(dπ(v)).

We can write this as
ϑ = ψ∗

[
A−1θ

]
(4.6)

where
A−1θ

is the one form defined on U ×G by

A−1θ(η + ζ) = A−1(θ(η)), η ∈ TMx, ζ ∈ TGA.

Here we have made the standard identification of T (U×G)(x,A) as a direct sum,

T (U ×G)(x,A) ∼ TMx ⊕ TGA,

valid on any product space.

4.3.3 The definition of ω.

Next we will define ω in terms of the identification

ψ : π−1(U) → U ×G
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given by a local frame field, and check that it satisfies

dϑ+ ω ∧ ϑ = 0, εiω
i
j = −εjωj

i .

By Cartan’s lemma, this uniquely determines ω, so the definition must be inde-
pendent of the choice of frame field, and so ω is globally defined on O(M).

Let ω be the connection form (of the Levi-Civita connection) of the frame
field E.

Define
ω := ψ∗

[
A−1ωA+A−1dA

]
(4.7)

where the expression in brackets on the right is a matrix valued one form defined
on U ×G. Then on U ×G we have

d[A−1θ] = −A−1dA ∧A−1θ +A−1dθ

= −A−1dA ∧A−1θ −A−1ωA ∧A−1θ so
0 = d[A−1θ] +

[
A−1ωA+A−1dA

]
∧A−1θ.

Applying ψ∗ yields
dϑ+ ω ∧ ϑ = 0.

as desired. The antisymmetry condition says that ω takes values in the Lie
algebra of G. Hence so does AωA−1 for any A ∈ G. We also know that A−1dA
takes values in the Lie algebra of G. Hence so does ω.

4.4 The connection form in a frame field as a
pull-back.

We now have a reinterpretation of the connection form, ω, associated to a frame
field. Indeed, the form ω is a matrix valued linear differential form defined on
all of O(M). A frame field, E, defined on an open set U , can be thought of as
a map, x 7→ E(x) from U to O(M):

E : U → O(M), x 7→ E(x).

Then the pull-back of ω under this map is exactly ω, the connection form asso-
ciated to the frame field! In symbols

E∗ω = ω.

To see this, observe that under the map ψ : π−1(U) → U×G, we have ψ(E(x)) =
(x, I) where I is the identity matrix. Thus

ψ ◦ E = (id, I)

where id : U → U is the identity map and I means the constant map sending
every point x into the identity matrix. By the chain rule

E∗ω = E∗ψ∗
[
A−1ωA+A−1dA

]
= (ψ ◦ E)∗

[
A−1ωA+A−1dA

]
= ω.
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Thus, for example, the frame field E is parallel relative to a vector field, X
on M if and only if ∇X(E) ≡ 0 which is the same as

i(X)ω ≡ 0

where ω is the connection form of the frame field. In view of the preceding
result this is the same as

i [dE(X)]ω ≡ 0.

Here dE(X) denotes the vector field along the map E : U → O(M) which
assigns to each x ∈ U the vector dEx(X(x)).

Let me repeat this important point in a slightly different version. Suppose
that C : [0, 1] →M is a curve on M , and we start with an initial frame E(0) at
C(0). We know that there is a unique curve t 7→ E(t) in O(M) which gives the
parallel transport of E(0) along the curve C. We have “lifted” the curve C on
M to the curve γ : t 7→ E(t) on E(M). The curve γ is completely determined
by

• its initial value γ(0),

• the fact that it is a lift of C, i.e. that π(γ(t)) = C(t) for all t, and

•
i(γ′(t))ω) = 0. (4.8)

We now want to describe two important properties of the form ω. For B ∈ G,
recall that rB denotes the transformation

rB : O(M) → O(M), E 7→ EB−1.

We will use the same letter, rB to denote the transformation

rB : U ×G→ U ×G, (x,A) 7→ (x,AB−1).

Because of (4.4), we may use this ambiguous notation since

ψ ◦ rB = rB ◦ ψ.

It then follows from the local definition (4.7) that

r∗Bω = BωB−1. (4.9)

Indeed

r∗b (ω) = r∗bψ
∗ [A−1ωA+A−1dA

]
= ψ∗r∗B

[
A−1ωA+A−1dA

]
and

r∗B(A−1ωA) = B(A−1ωA)B−1
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since ω does not depend on G and

r∗B(A−1dA) = B(A−1dA)B−1.

We can write (4.9) as
r∗Bω = AdB(ω). (4.10)

For the second property, we introduce some notation. Let ξ be a matrix
which is “antisymmetric” in the sense that

εiξ
i
j = −εjξj

i .

This implies that the one parameter group

t 7→ exp−tξ = I − tξ +
1
2
t2ξ2 − 1

3!
t3ξ3 + · · ·

lies in our group G for all t. Then the one parameter group of transformations

rexp−tξ : O(M) → O(M)

has as its infinitesimal generator a vector field, which we shall denote by Xξ.
The one parameter group of transformations

rexp−tξ : U ×G→ U ×G

also has an infinitesimal generator: Identifying the tangent space to the space
of matrices with the space of matrices, we see that the vector field generating
this one parameter group of transformations of U ×G is

Yξ : (x,A) 7→ Aξ.

So the vector field Yξ takes values at each point in the TG component of the
tangent space to U × G and assigns to each point (x,A) the matrix Aξ. In
particular ω(Yξ) = 0 since ω is only sensitive to the TU component. Also dA
is by definition the tautological matrix valued differential form which assigns to
any tangent vector Z the matrix Z. Hence

A−1dA(Yξ) = ξ.

From
rB ◦ ψ = ψ ◦ rB

it follows that
ψ∗(Yξ) = Xξ

and hence that
ω(Xξ) ≡ ξ. (4.11)

Finally, the curvature form from the point of view of the bundle of frames is
given as usual as

Ω := dω +
1
2
[ω∧, ω]. (4.12)
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4.5 Gauss’ theorems.

We pause with this section to go back to classical differential geometry using
the language we have developed so far.

4.5.1 Equations of structure of Euclidean space.

Suppose we take M = Rn with its standard Euclidean scalar product. The
Levi-Civita connection is then derived from the identification of the tangent
space at every point with Rn itself - a vector field becomes identified with an
Rn valued function which we can then differentiate. A point of O(Rn) can then
be written as (x, E1, . . . , En) where x ∈ Rn and Ei ∈ Rn with E1, . . . , En forming
an orthonormal basis of Rn. We then have

π(x, E1, . . . , En) = x

and
ϑi = 〈dx, Ei〉,

the right hand side being the scalar product of the vector valued differential
form, dx and the vector valued function Ei. We have

dx = Eϑ.

Differentiating this equation gives

0 = dE ∧ ϑ+ Edϑ.

We have
dEj =

∑
ωi

jEi where ωi
j := 〈dEj , Ei〉

or
dE = Eω.

We thus get
dϑ+ ω ∧ ϑ = 0

showing that ω is indeed the connection form. Taking the exterior derivative of
the equation dE = E ∧ ω gives

dω + ω ∧ ω = 0

showing that the curvature does indeed vanish. To summarize, the equations of
structure of Euclidean geometry are

ϑi := 〈dx, Ei〉 (4.13)
ωi

j := 〈dEj , Ei〉 (4.14)

ωi
j = −ωj

i (4.15)
dx = Eϑ (4.16)
dE = Eω (4.17)

dϑ+ ω ∧ ϑ = 0 (4.18)
dω + ω ∧ ω = 0. (4.19)
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4.5.2 Equations of structure of a surface in R3.

We specialize to n = 3. Let S be a surface in R3. This picks out a three
dimensional submanifold of the six dimensional O(R3, call it F(S) consisting
of all (x, E1, E2, E3) where

x ∈ S
and

E1 and E2 are tangent to S.

Of course this implies that E3 is normal to S. We will use a subscript S to denote
the pull back of all functions and forms from O(R3) to F(S). For example,
the vector valued differential form dxS takes values in the tangent space TSx

regarded as a subspace of R3. Hence ϑ3
S ≡ 0. The set of all (xS , E1S , E2S)

constitutes O(S), the bundle of frames of S thought of as a two dimensional
Riemann manifold. Since E3S is determined up to a ± sign by the point xS , we
can think of F(S) as a two fold cover of O(S). [From a local point of view we
can always may a choice of the sign, and also from the global point of view if
the surface is orientable.]

From the equations of structure of Euclidean space we obtain

dxS = ϑ1
SE1S + ϑ2

SE2S (4.20)
dE3S = ω1

3SE1S + ω2
3SE2S (4.21)

dϑ1
S + ω1

2S ∧ ϑ2
S = 0 (4.22)

dϑ2
S − ω1

2S ∧ ϑ1
S = 0 (4.23)

dω1
2S + ω1

3S ∧ ω3
2S = 0 (4.24)

the last equation following from ω1
2 = −ω2

1 and ω1
1 = 0.

Equations (4.22) and (4.23) show that ω1
2S and ω2

1S = −ω1
2S are the connec-

tion forms of O(S) if we (locally) identify it with F(S). In particular, ω1
2S is

intrinsically defined - it gives the Levi-Civita connection of the induced Riemann
metric on S.

4.5.3 Theorema egregium.

Equation (4.21) shows that

ω1
3S ∧ ω2

3S = Kϑ1
S ∧ ϑ2

S (4.25)

where K is the Gaussian curvature. Gauss’s theorema egregium now follows
immediately from (4.24).

4.5.4 Holonomy.

Let S be any two dimensional Riemann manifold (not necessarily embedded in
three space). The connection matrix is a two by two antisymmetric matrix

ω =
(

0 ω1
2

ω2
1 0

)
=
(

0 ω1
2

−ω1
2 0

)
.
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Let E = (E1, E2) be a frame field on S, and let

ω1
2 = E∗ω1

2S

be the corresponding form on S. Let γ be a curve on S lying entirely in the
domain of definition of the frame field, and let t 7→ v(t) ∈ TSγ(t) be a field of
unit vectors along the curve. We can write

v(t) = cosφ(t)E1(γ(t)) + sinφ(t)E2(γ(t))

where φ(t) is the angle that the unit vector v(t) makes with the first basis vector,
E1(γ(t)), of the frame at γ(t). Then

v′ = −φ′ sinφE1 + ω2
1(γ′) cosφE2 + φ′ cosφE2 + ω1

2(γ′)E1

= (φ′ − ω1
2(γ′))[− sinφE1 + cosφE2].

In particular, v is parallel along γ if and only if

φ′(t) ≡ ω1
2(γ′(t)). (4.26)

So
[φ] =

∫
γ

ω1
2 (4.27)

gives the change in φ of a parallel vector field along γ. Of course the angle is
relative to a choice of frame field, and so has no intrinsic meaning. But suppose
that γ is a closed curve, so [φ] measures the rotation involved in transporting a
tangent vector all the away around the curve back to the starting point. This
is well defined, independent of the frame field, and (4.27) is valid for any closed
curve on the surface. In particular, suppose that

γ = ∂D

i.e.suppose that γ is the boundary curve of some oriented two dimensional re-
gion. We then may apply Stokes’ theorem and (4.25) to conclude that

[φ] =
∫

D

KdA. (4.28)

4.5.5 Gauss-Bonnet.

Suppose that D is contained in the domain of a frame field, say a frame field
obtained by orthonormalizing the basic fields of a coordinate patch, to fix the
ideas. Let ψ denote the angle that the vector field makes with γ′ rather than
with E1. The tangent vector γ′ turns through an angle of 2π relative to the
frame field as we traverse the curve. (this requires some proof in general, but
is obvious if D is convex in some coordinate chart, since then the angle that γ′

makes with the x1− axis is steadily increasing. So we can restrict to this case
to avoid calling in additional arguments.) Thus

[ψ] = [φ]− 2π.
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If γ is only piecewise differentiable, like the boundary of a polygon, then the
change in ψ will come from two sources, the contribution of the smooth portions
and the exterior angles at the corners. So we can write

[ψ] = [edge contributions]−
∑

exterior angles.

We get

2π =
∫

D

KdA+
∑

exterior angles− [edge contributions].

Now suppose we subdivide the surface into such “polygonal” regions, and sum
the preceding equation over all regions. The edge contributions will cancel, since
each edge will contribute twice, traversed in opposite directions. Thus

2πf =
∫

S

KdA+
∑

exterior angles

where f is the number of regions, D, or “faces”. Now we can write each exterior
angle as

π − interior angle.

The sum of all the interior angles at each corner from the regions impinging on
it add up to 2π. Each edge contributes to two corners. So if we let e denote
the number of edges and v the number of “vertices” or corners we obtain the
Gauss-Bonnet formula

f − e+ v =
1
2π

∫
S

KdA. (4.29)

The amazing property of this formula is that the left hand side does not depend
on the choice of metric, while the right hand side does not depend on the choice
of subdivision (and is not obviously an integer on the face of it). So we obtain
Euler’s theorem that f − e+ v is independent of the choice of subdivision, and
also that the integral of the curvature is independent of the choice of metric,
and is an integer equal to the Euler number f − e+ v.



Chapter 5

Connections on principal
bundles.

According to the current “standard model” of elementary particle physics, every
fundamental force is associated with a kind of curvature. But the curvatures
involved are not only the geometric curvatures of space-time, but curvatures
associated with the notion of a connection on a geometrical object (a “princi-
pal bundle”) which is a generalization of the bundle of frames studied in the
preceding chapter. We develop the necessary geometrical facts in this chapter.

5.1 Submersions, fibrations, and connections.

A smooth map π : Y → X is called a submersion if dπy : TYy → TXπ(y)

is surjective for every y ∈ Y . Suppose that X is n-dimensional and that Y is
n + k dimensional. The implicit function theorem implies the following for a
submersion:

If π : Y → X is a submersion, then about any y ∈ Y there exist coordinates
z1, . . . , zn; y1, . . . , yk (such that y has coordinates (0, . . . , 0; 0 . . . , 0)) and coor-
dinates x1, . . . , xn about π(y) such that in terms of these coordinates π is given
by

π(z1, . . . , zn; y1, . . . , yk) = (z1, . . . , zn).

In other words, locally in Y , a submersion looks like the standard projection
from Rn+k to Rn near the origin. For the rest of this section we will let
π : Y → X denote a submersion.

For each y ∈ Y we define the vertical subspace Verty of the tangent space
TYy to consist of those η ∈ TYy such that

dπy(η) = 0.

107
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In terms of the local description, the vertical subspace at any point in the
coordinate neighborhood of y given above is spanned by the values of the vector
fields

∂

∂y1
, . . . ,

∂

∂yk

at the point in question. This shows that the Verty fit together to form a smooth
sub-bundle, call it Vert , of the tangent bundle TY .

A general connection on the given submersion is a choice of complemen-
tary subbundle Hor to Vert. This means that at each y ∈ Y we are given a
subspace Hory ⊂ TYy such that

Verty ⊕Hory = TYy

and that the Hory fit together smoothly to form a sub-bundle of TY . It follows
from the definition that Hory has the same dimension as TXπ(y) and, in fact,
that the restriction of dπy to Hory is an isomorphism of Hory with TXπ(y). We
should emphasize that the vertical bundle Vert comes along with the notion of
the submersion π. A connection Hor, on the other hand, is an additional piece
of geometrical data above and beyond the submersion itself.

Let us describe a connection in terms of the local coordinates given above.
The local coordinates x1, . . . , xn on X give rise to the vector fields

∂

∂x1
, . . . ,

∂

∂xn

which form a basis of the tangent spaces to X at every point in the coordinate
neighborhood on X. Since dπ restricted to Hor is a bijection at every point of
Y , we conclude that there are functions ari, r = 1, . . . k, i = 1, . . . n on the
coordinate neighborhood on Y such that

∂

∂z1
+

k∑
r=1

ar1
∂

∂yr
, . . . ,

∂

∂zn
+

k∑
r=1

arn
∂

∂yr

span Hor at every point of the neighborhood.
Let C : [0, 1] → X be a smooth curve on X. We say that a smooth curve γ

on Y is a horizontal lift of C if

• π ◦ γ = C and

• γ′(t) ∈ Horγ(t) for all t.

For the first condition to hold, each point C(t) must lie in the image of π.
(The condition of being a submersion does not imply, without some additional
hypotheses, that π is surjective.) Let us examine the second condition in terms
of our local coordinate description. Suppose that x = C(0), that x = π(y), and
we look for a horizontal lift with γ(0) = y. We can write

C(t) = (x1(t), . . . , xn(t))
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in terms of the local coordinate system on X. So if γ is any lift (horizontal or
not) of C, we have

γ(t) = (x1(t), . . . , xn(t); y1(t), . . . , yk(t))

in terms of the local coordinate system. For γ to be horizontal, we must have

γ′(t) =
n∑

i=1

xi′(t)
∂

∂zi
+
∑

r

∑
i

ari(γ(t))xi′(t)
∂

∂yr
.

Thus the condition that γ be a horizontal lift amount to the system of ordinary
differential equations

dyr

dt
=
∑

r

ari(x1(t), . . . , xn(t); y1(t), . . . , yk(t))xi′(t)

where the xi and xi′ are given functions of t. This is a system of (possibly) non-
linear ordinary differential equations. The existence and uniqueness theorem
for ordinary differential equations says that for a given initial condition γ(0)
there is some ε > 0 for which there exists a unique solution of this system
of differential equations for 0 ≤ t < ε. Standard examples in the theory of
differential equations show that the solutions can “blow up” in a finite amount
of time; that in general one can not conclude the existence of the horizontal lift
γ over the entire interval of definition of the curve C.

In the case of linear differential equations, we do have existence for all time,
and therefore in the case of linear connections, or the connection that we studied
on the bundle of orthogonal frames, there was global lifting.

We will now impose some restrictive conditions. We will say that the map
π : Y → X is a locally trivial fibration if there exists a manifold F such that
every x ∈ X has a neighborhood U such that there exists a diffeomorphism

ψU π−1(U) → U × F

such that
π1 ◦ ψ = π

where
π1 : U × F → U

is projection onto the first factor. The implicit function theorem asserts that
a submersion π : Y → X looks like a projection onto a first factor locally in
Y . The more restrictive condition of being a fibration requires that π look like
projection onto the first factor locally on X, with a second factor F which is
fixed up to a diffeomorphism. If the map π : Y → X is a surjective submersion
and is proper (meaning that the inverse image of a compact set is compact)
then we shall prove below that π is a fibration if X is connected.

A second condition that we will impose is on the connection Hor . We will
assume that every smooth curve C has a global horizontal lift γ. We saw that
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this is the case when local coordinates can be chosen so that the equations for
the lifting are linear, we shall see that it is also true when π is proper. But let
us take this global lifting condition as a hypothesis for the moment.

Let C : [a, b] :→ X by a smooth curve. For any y ∈ π−1(C(a)) we have a
unique lifting γ : [a, b] → Y with γ(a) = y, and this lifting depends smoothly
on y by the smooth dependence of solutions of differential equations on initial
conditions. We thus have a smooth diffeomorphism associated with any smooth
curve C : [a, b] → X sending

π−1(C(a)) → π−1(C(b)).

If c ∈ [a, b] if follows from the definition (and the existence and uniqueness
theorem for differential equations) that the composite of the map

π−1(C(a)) → π−1(C(c))

associated with the restriction of C to [a, c] with the map

π−1(C(c)) → π−1((C(b))

associated with the restriction of the curve C to [c, b] is exactly the map

π−1(C(a)) → π−1(C(b))

above. This then allows us to define a map π−1(C(a)) → π−1(C(b)) associated
to any piecewise differentiable curve, and the diffeomorphism associated to the
concatenation of two curves which form a piecewise differentiable curve is the
composite diffeomorphism.

Suppose that X has a smooth retraction to a point. This means that there
is a smooth map φ : [0, 1]×X → X satisfying the following conditions where

φt : X → X

denotes the map
φt(x) = φ(t, x)

as usual. Here are the conditions:

• φ0 = id.

• φ1(x) = x0, a fixed point of X.

• φt(x0) = x0 for all t ∈ [0, 1].

Suppose also that the submersion π : Y → X is surjective and has a connection
with global lifting. We claim that this implies that that the submersion is a
trivial fibration; that there is a manifold F and a diffeomorphism

Φ : Y → X × F with π1 ◦ Φ = π
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where π1 is projection onto the first factor. Indeed, take

F = π−1(x0).

For each x ∈ X define
Φx : π−1(x) → F

to be given by the lifting of the curve

t 7→ φt(x).

Then define
Φ(y) = (π(y),Φπ(y)(y)).

The fact that Φ is a diffeomorphism follows from the fact that we can construct
the inverse of Φ by doing the lifting in the opposite direction on each of the above
curves. Every point on a manifold has a neighborhood which is diffeomorphic
to a ball around the origin in Euclidean space. Such a ball is retractible to the
origin by shrinking along radial lines. This proves that any surjective submersion
which has a connection with a global lifting is locally trivial, i.e. is a fibration.

For any submersion we can always construct a connection. Simply put a
Riemann metric on Y and let Hor be the orthogonal complement to Vert relative
to this metric.

So to prove that if π : Y → X is a surjective submersion which is proper
then it is a fibration, it is more than enough to prove that every connection has
the global lifting property in this case. So let C : [0, 1] → X be a smooth curve.
Extend C so it is defined on some slightly larger interval, say [−a, 1 + a], a > 0.
For any y ∈ π−1(C(t)), t ∈ [0, 1] we can find a neighborhood Uy and an ε > 0
such that the liftng of C(s) exists for all z ∈ Uy and t−ε < s < t+ε. This is what
the local existence theorem for differential equations gives. But C([0, 1]) is a
compact subset of X, and hence π−1(C([0, 1]) is compact since π is proper. This
means that we can cover π−1(C([0, 1]) by finitely many such neighborhoods, and
hence choose a fixed ε > 0 that will work for all y ∈ π−1(C([0, 1]). But this
clearly implies that we have global lifting, since we can do the lifting piecemeal
over intervals of length less than ε and patch the local liftings together.

5.2 Principal bundles and invariant connections.

5.2.1 Principal bundles.

Let G be a Lie group with Lie algebra g. Let P be a space on which G acts. To
tie in with our earlier notation, and also for later convenience, we will denote
this action by

(p, a) 7→ pa−1, p ∈ P, a ∈ G

so a ∈ G acts on P by a diffeomorphism that we will denote by ra:

ra : P → P, ra(p) = pa−1.
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If ξ ∈ g, then exp(−tξ) is a one parameter subgroup of G, and hence

rexp(−tξ)

is a one parameter group of diffeomorphisms of P , and for each p ∈ P , the curve

rexp(−tξ)p = p(exp tξ)

is a smooth curve starting at t at t = 0. The tangent vector to this curve at
t = 0 is a tangent vector to P at p. In this way we get a linear map

up : g → TPp, up(ξ) =
d

dt
p(exp tξ)|t=0. (5.1)

For example, if we take P = G with G acting on itself by right multiplication,
and if we assumed that G is a subgroup of Gl(n), so that we may identify TPp

as a subspace of the the space of all n× n matrices, then we have seen that

up(ξ) = pξ

where the meaning of pξ on the right hand side is the product of the matrix p
with the matrix ξ. For this case, if ra(p) = p for some p ∈ P , the a = e, the
identity element.

In general, we say that the group action of G on P is free if no point of P
is fixed by any element of G other than the identity. So “free” means that if
ra(p) = p for some p ∈ G then a = e. Clearly, if the action is free, then the map
up is injective for all p ∈ P .

If we have an action of G on P and on Q, then we automatically get an
action of G (diagonally) on P ×Q, and if the action of P is free then so is the
action on P ×Q.

For example (to change the notation slightly), if X is a space on which G
acts trivially, and if we let G act on itself by right multiplication, then we get
a free action of G on X × G. This is what we encountered when we began to
construct the manifold structure on the bundle of orthogonal frames out of a
local frame field. We now generalize this construction:

If we are given an action of G on P we have a projection π : P → P/G which
sends each p ∈ P to its G-orbit. We make the following assumptions:

• The action of G on P is free.

• The space P/G is a differentiable manifold M and the projection π : P →
M is a smooth fibration.

• The fibration π is locally trivial consistent with the G action in the sense
that every m ∈ M has a neighborhood U such that there exists a diffeo-
morphism

ψU π−1(U) → U ×G

such that
π1 ◦ ψ = π
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where
π1 : U × F → U

is projection onto the first factor and if ψ(p) = (m, b) then

ψ(rap) = (m, ba−1).

When all this happens, we say that π : P → M is a principal fiber bundle
over M with structure group G.

Suppose that π : P → M is a principal fiber bundle with structure group
G. Since π is a submersion, we have the sub-bundle Vert of the tangent bundle
TP , and from its construction, the subspace Vertp ⊂ TPp is spanned by the
tangents to the curves p(exp tξ), ξ ∈ g. In other words, up is a surjective map
from g to Vertp. Since the action of G on P is free, we know that up is injective.
Putting these two facts together we conclude that

Proposition 6 If π : P → M is a principal fiber bundle with structure group
G then up is an isomorphism of g with Vertp for every p ∈ P .

Let us compare the isomorphism up with the isomorphism urb(p) = upb−1 .
The action of b ∈ G on P preserves the fibration and hence

d(rb)p : Vertp → Vertpb−1 .

Let v = up(ξ) ∈ Vertp. This means that

v =
d

dt
(p exp tξ)t=0.

By definition

d(rb)pv =
d

dt
(rb(p exp tξ))|t=0 =

d

dt
((p exp tξ)b−1)|t=0.

We have

p(exp tξ)b−1 = pb−1(b(exp tξ)b−1)
= pb−1 exp tAdb ξ

where Ad is the conjugation, or adjoint, action of G on its Lie algebra. We have
thus shown that

d(rb)pup(ξ) = urb(p)(Adb ξ). (5.2)

5.2.2 Connections on principal bundles.

Let π : P → M be a principal bundle with structure group G. Recall that in
the general setting, we defined a (general) connection to be a sub-bundle Hor
of the tangent bundle TP which is complementary to the vertical sub-bundle
Vert. Given the group action of G, we can demand that Hor be invariant under
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G. So by a connection on a principal bundle we will mean a sub-bundle
Hor of the tangent bundle such that

TPp = Vertp ⊕Horp at all p ∈ P

and
d(rb)p (Horp) = Horrb(p) ∀ b ∈ G, p ∈ P. (5.3)

At any p we can define the projection

Vp : TPp → Vertp

along Horp, i.e. Vp is the identity on Vertp and sends all elements of Horp to
0. Giving Horp is the same as giving Vp and condition (5.3) is the same as the
condition

d(rb)p ◦Vp = Vrb(p) ◦ d(rb)p ∀ b ∈ G, p ∈ P. (5.4)

Let us compose u−1
p : Vertp → g with Vp. So we define the g valued form ω by

ωp := u−1
p ◦Vp. (5.5)

Then it follows from (5.2) and (5.4) that

r∗bω = Adb ω. (5.6)

Let ξP be the vector field on P which is the infinitesimal generator of rexp tξ.
In view of definition of up as identifying ξ with the tangent vector to the curve
t 7→ p(exp tξ) = rexp−tξp at t = 0, we see that

i(ξP )ω = −ξ. (5.7)

The infinitesimal version of (5.6) is

DξP
ω = [ξ, ω]. (5.8)

Define the curvature by our formula

Ω := dω +
1
2
[ω, ω]. (5.9)

It follows from (5.6) that

r∗bΩ = Adb Ω ∀b ∈ G. (5.10)

Now
i(ξP )dω = DξP

ω − di(ξP )ω

by Weil’s formula for the Lie derivative. By (5.7) the second term on the right
vanishes because it is the differential of the constant −ξ. So

i(ξP )dω = [ξ, ω].
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On the other hand

i(ξP )[ω, ω] = [i(ξP )ω, ω]− [ω, i(ξP )ω] = −2[ξ, ω]

where we used (5.7) again. So

i(v)Ω = 0 if v ∈ Vertp. (5.11)

To understand the meaning of Ω when evaluated on a pair of horizontal
vectors, letX and Y be pair of horizontal vector fields, that is vector fields whose
values at every point are elements of Hor. Then i(X)ω = 0 and i(Y )ω = 0. So

Ω(X,Y ) = i(Y )i(X)Ω = i(Y )i(X)dω = dω(X,Y ).

But by our general formula for the exterior derivative we have

dω(X,Y ) = X(i(Y )ω)− Y (i(X)ω)− ω([X,Y ]).

The first two terms vanish and so

Ω = −ω([X,Y ]). (5.12)

This shows how the curvature measures the failure of the bracket of two hori-
zontal vector fields to be horizontal.

5.2.3 Associated bundles.

Let π : P → M be a principal bundle with structure group G, and let F be
some manifold on which G acts. We will write this action as multiplication on
the left; i.e. we will denote the action of an element a ∈ G on an element f ∈ F
as af . We then have the diagonal action of G on P × F : For a ∈ G we define

diag(a) : P × F → P × F, diag(a)(p, f) = (pa−1, af).

Since the action of G on P is free, so is its diagonal action on P × F . We
can form the quotient space of this action, i.e. identify all elements of P × F
which lie on the same orbit; so we identify the points (p, f) and (pa−1, af). The
quotient space under this identification will be denoted by

P ×G F

or by
F (P ).

It is a manifold and the projection map π : P →M descends to a projection of
F (P ) →M which we will denote by πF or simply by π when there is no danger
of confusion. The map πF : F (P ) → M is a fibration. The bundle F (P ) is
called the bundle associated to P by the G-action on F .

Let
ρ : P × F → P (F )
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be the map which send (p, f) into its equivalence class.
Suppose that we are given a connection on the principal bundle P . Recall

that this means that at each p ∈ P we are given a subspace Horp ⊂ TPp which
is complementary to the vertical, and that this assignment is invariant under
the action of G in the sense that

Horpa−1 = dra(Horp).

Given an f ∈ F , we can consider Horp as the subspace

Horp×{0} ⊂ T (P × F )(p,f) = TPp ⊕ TFf

and then form
dρ(p,f) Horp ⊂ T (F (P ))ρ(p,f)

which is complementary to the vertical subspace V (F (P ))ρ(p,f) ⊂ T (F (P ))ρ(p,f).
The invariance condition of Hor implies that dρ(p,f)(Horp) is independent of the
choice of (p, f) in its equivalence class.

So a connection on a principal bundle induces a connection on each of its
associated bundles.

5.2.4 Sections of associated bundles.

If π : Y → X is a submersion, then a section of this submersion is a map

s : X → Y

such that
π ◦ s = id.

In other words, s is a map which associates to each x ∈ X an element

s(x) ∈ Yx = π−1(x).

Naturally, we will be primarily interested in sections which are smooth.
For example, we might consider the tangent bundle TM . A section of the

tangent bundle then associates to each x ∈M a tangent vector s(x) ∈ TMx. In
other words, s is a vector field. Similarly, a linear differential form on M is a
section of the cotangent bundle T ∗M .

Suppose that π = πF : F (P ) → M is an associated bundle of a principal
bundle P , and that s : M → F (P ) is a section of this bundle. Let x be a point
of M , and let p ∈ Px = π−1(x) be a point in the fiber of the principal bundle
P →M lying in the fiber over x. Then there is a unique f ∈ F such that

ρ((p, f)) = s(x).

We thus get a function φs : P → F by assigning to p this element f ∈ F . In
other words, φs is uniquely determined by

ρ((p, φs(p)) = s(π(p)). (5.13)



5.2. PRINCIPAL BUNDLES AND INVARIANT CONNECTIONS. 117

Suppose we replace p by ra(p) = pa−1. Since ρ((pa−1, af)) = ρ((p, f)) we see
that φs satisfies the condition

φ ◦ ra = aφ ∀ a ∈ G. (5.14)

Conversely, suppose that φ : P → F satisfies (5.14). Then

ρ((p, φ(p)) = ρ((pa−1, φ(pa−1))

and so defines an element s(x), x = π(p). So a φ : P → F satisfying (5.14)
determines a section s : M → F (P ) with φ = φs. It is routine to check that s
is smooth if and only if φ is smooth. We have thus proved

Proposition 7 There is a one to one correspondence between (smooth) sections
s : M → F (P ) and (smooth) functions φ : P → F satisfying (5.14). The
correspondence is given by (5.13).

An extremely special case of this proposition is where we take F to be the
real numbers with the trivial action of G on R. Then R(P ) = M × R since
the map ρ does not identify two distinct elements of R but merely identifies all
elements of Px. A section s of M ×R is of the form s(x) = (x, f(x)) where f
is a real valued function. the proposition then asserts that we can identify real
valued functions on M with real valued functions on P which are constant on
the fibers Px.

5.2.5 Associated vector bundles.

We now specialize to the case that F is a vector space, and the action of G on F
is linear. In other words,we are given a linear representation of G on the vector
space F . If x ∈ M we can add two elements v1 and v2 of F (P )x by choosing
p ∈ Px which then determines f1 and f2 in F such that

ρ((p, f1)) = v1 and ρ((p, f2)) = v2.

We then define
v1 + v2 := ρ((p, f1 + f2)).

The fact that the action of G on F is linear guarantees that this definition is
independent of the choice of p. In a similar way, we define multiplication of an
element of F (P )x by a scalar and verify that all the conditions for F (P )x to be
a vector space are satisfied.

Let V →M be a vector bundle. So V →M is a fibration for which each Vx

has the structure of a vector space. (As a class of examples of vector bundles
we can consider the associated vector bundles F (P ) just considered.) We can
then consider V valued differential forms on M . For example, a V valued linear
differential form τ will be a rule which assigns a linear map

τx : TMx → Vx
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for each x ∈M , and similarly we can talk of V valued k-forms.
For the case that V = F (P ) is an associated vector bundle we have a gen-

eralization of Proposition 7 to the case of differential forms. That is, we can
describe F (P ) valued differential forms as certain kinds of F -valued forms on
P . To see how this works, suppose that τ is an F (P )-valued k- form on M . Let
x ∈M and let p ∈ Px. Now

τx : ∧k(TMx) → F (P )x

and p gives an identification map which we will denote by

identp

of F (P )x with F - the element f ∈ F being identified with ρ((p, f)) ∈ F (P )x.
Also,

dπp : TPp → TMx

and so induces map (which we shall also denote by dπp)

dπp : ∧k(TPp) → ∧k(TMx).

So
σp := identp ◦ τx ◦ dπp

maps ∧k(TPp) → F . Thus we have defined an F -valued k-form σ on P . If v is
a vertical tangent vector at any point p of P we have dπp(v) = 0, so

i(v)σ = 0 if v ∈ Vert (P ). (5.15)

Let us see what happens when we replace p by ra(p) = pa−1 in the expression
for σ. since π ◦ ra = π, we conclude that

dπpa−1 ◦ d(ra)p = dπp.

Also,
identpa−1 = a ◦ identp

where the a on the right denotes the action of a on F . We thus conclude that

r∗aσ = a ◦ σ. (5.16)

Conversely, suppose that σ is an F -valued k-form on P which satisfies (5.15)
and (5.16). It defines an F (P ) valued k-form τ on M as follows: At each x ∈M
choose a p ∈ Px. For any k tangent vectors v1, . . . , vk ∈ TMx choose tangent
vectors w1, . . . , wk ∈ TPp such that

dπp(wj) = vj , j = 1, . . . , k.

Then consider
σp(w1 ∧ · · · ∧ wk) ∈ F.
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Condition (5.15) guarantees that this value is independent of the choice of the
wi with dπp(wj) = vj . In this way we define a map

∧k(TMx) → F.

If we now apply ρ(p, ·) to the image, we get a map

∧k(TMx) → F (P )x

and condition (5.16) guarantees that this map is independent of the choice of
p ∈ Px. From the construction it is clear that the assignments τ → σ and σ → τ
are inverses of one another. We have thus proved:

Proposition 8 There is one to one correspondence between F (P ) valued forms
on M and F valued forms on P which satisfy (5.15) and (5.16).

Forms on P which satisfy (5.15) and (5.16) are called basic forms because
(according to the proposition) F -valued forms on P forms on P which (5.15) and
(5.16) correspond to forms on the base manifold M with values in the associated
bundle F (P ).

For example, equations (5.10) and (5.11) say that the curvature of a connec-
tion on a principal bundle is a basic g valued form relative to the adjoint action
of G on g. According to the proposition, we can consider this curvature as a
two form on the base M with values in g(P ), the vector bundle associated to P
by the adjoint action of G on its Lie algebra.

Here is another important illustration of the concept. Equation (5.6) says
that a connection form ω satisfies (5.16), but it certainly does not satisfy (5.15).
Indeed, the interior product of a vertical vector with the linear differential form
ω is given by (5.7). However, suppose that we are given two connection forms
ω1 and ω2. Then their difference ω1 − ω2 does satisfy (5.15) and, of course,
(5.16). We can phrase this by saying that the difference of two connections is a
basic g valued one-form.

5.2.6 Exterior products of vector valued forms.

Suppose that F1 and F1 are two vector spaces on which G acts, and suppose
that we are given a bilinear map

b : F1 × F2 → F3

into a third vectors space F3 on which G acts, and suppose that b is consistent
with the actions of G in the sense that

b(af1, af2) = ab(f1, f2).

Examples of such a situation that we have come across before are:

1. G is a subgroup of Gl(n) and F1, F2 and F3 are all the vector space of
n× n matrices, and b is matrix multiplication.
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2. G is a subgroup of Gl(n), F1 is the space of all n× n matrices, F2 and F3

are Rn and b is multiplication of a matrix times a vector.

3. G is a general Lie group, F1 = F2 = F3 = g, the Lie algebra of G and b
is Lie bracket.

In each of these cases we have had occasion to form the exterior product of an
F1 valued differential form with an F2 valued differential form to obtain an F3

valued form.
We can do this construction in general: form the exterior product of an F1

valued k-form with an F2-valued ` form to get and F3 valued k + ` form. For
example, if f1

1 , . . . , f
1
m is a basis of F1 and f2

1 , . . . , f
2
n is a a basis of F2 then the

most general F1-valued k-form α can be written as

α =
∑

αif1
i

where the αi are real valued k-forms, and the most general F2-valued `-form β
can be written as

β =
∑

βjf2
j

where the βj are real valued ` forms. Let f3
1 , . . . , f

3
q be a basis of F3 and define

the numbers Bk
ij by

b(f1
i , f

2
j ) =

∑
k

Bk
ijf

3
k .

Then you can check that α ∧ β defined by

α ∧ β :=
∑

Bk
ij(α

i ∧ βj)f3
k

is independent of the choice of bases. In a similar way we can define the exterior
derivative of a vector valued form, the interior product of a vector valued form
with a vector field, the pull back of a vector valued form under a map etc.
There should be little problem in understanding the concept involved. There
is a bit of a notational problem - how explicit do we want to make the map b
in writing down a symbol for this exterior product. In example 1) we simply
wrote ∧ for the exterior product of two matrix valued forms. This forced us to
use the rather ugly [α,∧β] for the exterior product of two Lie algebra valued
forms, where the b was commutator or Lie bracket. We shall retain this ugly
notation for the sake of the clarity it gives.

A situation that we will want to discuss in the next section is: we are given
an action of G on a vector space F , and unless forced to be more explicit, we
have chosen to denote the action of an element a ∈ G on an element f ∈ F
simply by af . This determines a bilinear map

b : g× F → F

by

b(ξ, f) :=
d

dt
(exp tξ)f|t=0.



5.3. COVARIANT DIFFERENTIALS AND COVARIANT DERIVATIVES.121

We therefore get an exterior multiplication of a g-valued form with an F -valued
form. We shall denote this particular type of exterior mutliplication by •. So if
α is a g-valued k-form and β is an F -valued ` form then α • β is an F -valued
(k + `)-form.

We point out that conditions (5.15) and (5.16) make perfectly good sense
for vector valued forms, and so we can talk of basic vector valued forms on P ,
and the exterior product of two basic vector valued forms is again basic.

5.3 Covariant differentials and covariant deriva-
tives.

In this section we consider a fixed connection on a principal bundle P . This
means that we are given a projection V of TP onto the vertical bundle and
therefore a connection form ω. Of course we also have a projection

id−V

onto the horizontal bundle Hor of the connection, where id is the identity op-
erator. This projection kills all vertical vectors.

5.3.1 The horizontal projection of forms.

If α is a (possibly vector valued) k-form on P , we will define the horizontal
projection Hα of α by

Hα(v1, . . . , vk) = α((id−V)v1, . . . , (id−V)vk). (5.17)

The following properties of H follow immediately from its definition and the
invariance of the horizontal bundle under the action of G:

1. H(α ∧ β) = Hα ∧Hβ.

2. r∗a ◦H = H ◦ r∗a ∀ a ∈ G.

3. If α has the property that i(w)α = 0 for any horizontal vector w then
Hα = 0. In particular,

4. Hω = 0.

5. If α has the property that i(v)α = 0 for any vertical vector v then Hα = α.
In particular,

6. H is the identity on basic forms.

In 1) α and β could be vector valued forms if we have the bilinear map b which
allows us to multiply them.

The map H is clearly a projection in the sense that

H2 = H.
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5.3.2 The covariant differential of forms on P .

Define d mapping k-forms into (k + 1) forms by

d := H ◦ d. (5.18)

The following facts are immediate:

• d(α ∧ β) = dα ∧Hβ + (−1)kHα ∧ dβ is α is a k-form.

• i(v)d = 0 for any vertical vector v.

• r∗a ◦ d = d ◦ r∗a ∀a ∈ G.

It follows from the second and third items that d carries basic forms into basic
forms.

If F is a vector space on which G acts linearly, we can form the associated
vector bundle F (P ), and we know from Proposition 8 that k-forms on M with
values in F (P ) are the same as basic k-forms on P with values in F . So giving
a connection on P induces an operator d mapping k-forms on M with values
in F (P ) to (k + 1)-forms on M with values in F (P ). For example, a section
s of F (P ) is just a zero form on M with values in the vector bundle F (M).
Giving the connection on P allows us to construct the one form ds with values
in F (P ). If X is a vector field on M , then we can define

∇Xs := i(X)ds,

the covariant derivative of s in the direction X.

5.3.3 A formula for the covariant differential of basic forms.

Let α be a basic form on P with values in the vector space F on which G acts
linearly. Let d be the covariant differential associated with the connection form
ω. We claim that

dα = dα+ ω • α. (5.19)

In order to prove this formula, it is enough to prove that when we apply i(v) to
the right hand side we get zero, if v is vertical. For then applying H does not
change the right hand side. But applying H to the right hand side yields dα
since dα := H(dα) and

Hω = 0

so
H(ω • α) = 0.

So it is enough to show that for any ξ ∈ g we have

i(ξP )dα = −i(ξP )(ω • α.

Since α is basic, we have i(ξP )α = 0, so by Weil’s identity we have

i(ξP )α = DξP
α = ξP • α
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by the infinitesimal version of the invariance condition (5.16). On the other
hand, since i(ξP )α = 0 and i(ξP )ω = −ξ, we have proved our formula.

There are a couple of special cases of (5.19) worth mentioning. If F is R
with the trivial representation then (5.19) says that d = d. This implies, that
if s is a section of an associated vector bundle F (P ), and if φ is a function on
M , so that φs is again a section of F (P ) then

d(φs) = (dφ) ∧ s+ sds

implying that for any vector field X on M we have

∇X(φs) = (Xφ)s+ φ(∇Xs).

Another important special case is where we take F = g with the adjoint
action. Then (5.19) says that

dα = dα+ [ω∧, α].

5.3.4 The curvature is dω.

We wish to prove that

dω = dω +
1
2
[ω∧, ω]. (5.20)

Both sides vanish when we apply i(v) where v is a vertical vector - this is true
for the left hand side by definition, and we have already verified this for the
right hand side, see equation (5.11). But if we apply H to both sides, we get
dω on the left, and also on the right since Hω = 0. �

5.3.5 Bianchi’s identity.

In our setting this says that
dΩ = 0. (5.21)

Proof. We have
dΩ = d(dω) + d

1
2
[ω∧, ω] = [dω∧, ω].

Applying H yields zero because Hω = 0. �

5.3.6 The curvature and d2.

We wish to show that
d2α = Ω • α. (5.22)

In this equation α is a basic form on P with values in the vector space F where
G acts, and we know that Ω is a basic form with values in g, so the right hand
side makes sense and is a basic F valued form. To prove this we use our formula

dα = dα+ ω • α
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and apply it again to get

d2α = d(dα+ ω • α) + ω • (dα+ ω).

We have d2 = 0 so the first expression (under the d) becomes

d(ω • α) = dω • α− ω • dα.

The second term on the right here cancels the term ω • dα so we get

d2α = dω • α+ ω • (ω • α).

So to complete the proof we must check that

1
2
[ω∧, ω] • α = ω • (ω • α).

This is a variant of a computation we have done several times before. Since
interior product with vertical vectors sends α to zero, while interior product with
horizontal vectors sends ω to zero, it suffices to verify that the above equation
is true after we take the interior product of both sides with two vertical vectors,
say ηP and ξP . Now

i(ξP ) = [ω∧, ω] = −[ξ, ω] + [ω, ξ] = −2[ξ, ω]

and so
i(ηp)i(ξP )(

1
2
[ω∧, ω] • α) = [ξ, η] • α.

A similar computation shows that

i(ηP )i(ξP )(ω • (ω • α) = ξ • (η • α)− η • (ξ • α).

But the equality of these two expressions follows from the fact that we have an
action of G on F which implies that for any ξ, η ∈ g and any f ∈ F we have

[ξ, η]f = ξ(ηf)− η(ξf). �



Chapter 6

Gauss’s lemma.

We have defined geodesics as being curves which are self parallel. But there
are several other characterizations of geodesics which are just as important:
for example, in a Riemann manifold geodesics locally minimize arc length: “a
straight line is the shortest distance between two points”. We want to give one
explanation of this fact here, using the “exponential map,” a concept introduced
by al Biruni (973-1048) but unappreciated for about 1000 years. The key result,
known as Gauss’ lemma asserts that radial geodesics are orthogonal to the
images of spheres under the exponential map, and this will allow us to relate
geodesics to extremal properties of arc length.

6.1 The exponential map.

Suppose that M is a manifold with a connection ∇. Let m0 be a point of M
and ξ ∈ TMm0 . Then there is a unique (maximal) geodesic γξ with γξ(0) =
m0, γ

′(0) = ξ. It is found by solving a system of second order ordinary differ-
ential equations. The existence and uniqueness theorem for solutions of such
equations implies that the solutions depend smoothly on ξ. In other words,
there exists a neighborhood N of ξ in the tangent bundle TM and an interval
I about 0 in R such that (η, s) 7→ γη(s) is smooth on N × I.

If we take ξ = 0, the zero tangent vector, the corresponding “geodesic”.
defined for all t is the constant curve γ0(t) ≡ m0. The continuity thus implies
that for ξ in some neighborhood of the origin in TMm0 , the geodesic γξ is defined
for t ∈ [0, 1]. Let D0 be the set of vectors ξ in TMm0 such that the maximal
geodesic through ξ is defined on [0, 1]. By the preceding remarks this contains
some neighborhood of the origin. Define the exponential map

exp = expm0
: D0 →M, exp(ξ) = γξ(1). (6.1)

For ξ ∈ TMm0 and fixed t ∈ R the curve

s 7→ γξ(ts)

125
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is a geodesic whose tangent vector at s = 0 is tξ. So the exponential map carries
straight lines through the origin in TMm0 into geodesics through m in M :

exp : tξ 7→ γξ(t).

Now the tangent vector to the line t 7→ tξ at t = 0 is just ξ under the standard
identification of the tangent space to a vector space with the vector space itself.
Also, the tangent vector to the curve t 7→ γξ(t) at t = 0 is ξ, by the definition
of γξ. So taking the derivatives of both sides shows that the differential of the
exponential map is the identity:

d exp0 : T (TMm0)0 → TMm0 = id

under the standard identification of the tangent space T (TMm0)0 with TMm0 .
From the inverse function theorem it follows that the exponential map is a

diffeomorphism in some neighborhood of the origin. Let U be a star shaped
neighborhood of the origin in TMm0 on which exp is a diffeomorphism, and let
U := exp(U) be its image in M under the exponential map. Then U is called
a normal neighborhood of m0. By construction (and the uniqueness theorem
for differential equations) for every m ∈ U there exists a unique geodesic which
joins m0 to m and lies entirely in U .

6.2 Normal coordinates.

Suppose that we choose a basis e = (e1, . . . , en) of TMm0 and let `1, . . . , `n be
the dual basis. We then get a coordinate system on U defined by

exp−1(m) =
∑

xi(m)ei

or, what is the same,
xi = `i ◦ exp−1 .

These coordinates are known as normal coordinates, or sometimes as inertial
coordinates for the following reason:

Let ξ =
∑
aiei be an element of U ⊂ TMm0 . Since exp(tξ) = γξ(t) the

coordinates of γξ(t) are given by

xi(γξ(t)) = `i(tξ) = t`i(ξ) = tai.

Thus the second derivative of xi(γξ(t)) with respect to t vanishes and the
geodesic equations (satisfied by γξ(t)) becomes∑

ij

Γk
ij(γξ(t))aiaj = 0, ∀k.

In particular, evaluating at t = 0 we get∑
ij

Γk
ij(0)aiaj = 0, ∀k.
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But this must hold for all (sufficiently small) values of the ai and hence for all
values of the ai. If the connection has zero torsion, so that the Γk

ij are symmetric
in i and j, this implies that

Γk
ij(0) = 0. (6.2)

In a normal coordinate system, the Christoffel symbols of a torsionless connec-
tion vanish at the origin. Hence at this one point, the equations for a geodesic
look like the equations of a straight line in terms of these coordinates. This was
Einstein’s resolution of Mach’s problem: How can the laws of physics - particu-
larly mechanics - involve rectilinear motion in absence of forces, as this depends
on the coordinate system. According to Einstein the distribution of matter in
the universe determines the metric which then determines the connection which
picks out the inertial frame.

6.3 The Euler field E and its image P.

The multiplicative group R+ acts on any vector space: r ∈ R+ sends any vector
v into rv. We set

r = et.

The vector field corresponding E corresponding to the one parameter group

v 7→ etv

is known as the Euler operator. From its definition, if q is a homogeneous
polynomial of degree k, then

Eq = kq,

an equation which is known as Euler’s equation. Also from its definition, differ-
entiating the curve

t 7→ etv

at t = 0 shows that the value of E at any vector v is

E(v) = v

under the natural identification of the tangent space at v of the vector space
with the vector space itself.

We want to consider the Euler field on the tangent space TMm0 (and its
restriction to the star shaped neighborhood U) and its image under the expo-
nential map, call it P. So P is a vector field defined on U . Since

exp(rξ) = γξ(r)

we have

P(exp ξ) =
d

dt

(
exp(etξ)

)
|t=0

=
d

dt
γξ(et)|t=0
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so
P(exp ξ) = γ̇ξ(1)

where we are using the dot to denote differentiation of the geodesic r 7→ γξ(r)
with respect to r. Applied to the vector sξ we obtain

P(γξ(s)) = sγ̇ξ(s).

We claim that
∇PP = P. (6.3)

Indeed,

∇PP(γξ(t)) = t∇γ̇ξ(t)(tγ̇ξ(t))

= t
dt

dt
γ̇ξ(t) + t2∇γ̇ξ(t)γ̇ξ(t)

= tγ̇ξ(t) since γξ is a geodesic
= P(γξ(t)).

Since the points of the form γξ(t) fill out the normal neighborhood, we conclude
that (6.3) holds.

Suppose that we have chosen a basis e = (e1, . . . , en) of TMm0 and so the
corresponding normal coordinates x1, . . . , xn on U . Each vector ei determines
the “constant” vector field on TMm0 which assigns to each vector ξ the value ei

(under the identification of (TMm0)ξ with TMm0). Let us temporarily introduce
the notation ẽi to denote this vector field. As `1, . . . , `n form the dual basis,
then each of the `j is a linear function on TMm0 , and the derivative of the
function `j with respect to the vector field ẽi is given by

ẽi`
j = 0, i 6= j, ẽi`

i = 1.

Now xj = `j ◦ exp−1 so we conclude that under the exponential map the vector
field ẽi is carried over into ∂i in terms of the normal coordinates.

Now
E(ξ) = ξ =

∑
`i(ξ)ei =

∑
`i(ξ)ẽi(ξ)

and `i(ξ) = xi(m) if ξ = exp−1(m). We conclude that the expression for P in
normal coordinates is given by

P =
∑

xi∂i. (6.4)

Thus in normal coordinates, the expression for P is the same as the expression
for the Euler operator E in linear coordinates.

6.4 The normal frame field.

Let Ei be the vector field obtained from ∂i(m0) = ei by parallel translation along
the γξ(t). By the existence and uniqueness theorem for differential equations,
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we know that Ei is a smooth vector field on our normal neighborhood N . By
the definition of P we have

∇P(Ei) = 0. (6.5)

Notice that at the single point m0 we have Ei(m0) = ∂i(m0) but this equality
need not hold at any other point. But E = (E1, . . . , Em) is a frame field
whichis covariant constant with respect to P. We call it the normal frame
field (associated to the basis (e1, . . . , en)). We then also construct the dual
frame field θ which is also covariantly constant with respect to P.

We claim that, remarkably,

P =
∑

i

xiEi. (6.6)

Indeed, the coefficients θi(P) of P with respect to the Ei are smooth functions
on our normal neighborhood. Our first claim is that these functions are (in
terms of our normal coordinates) homogeneous functions of order one. To show
this it is enough, by Euler’s theorem, to show that they satisfy the equation
Pf = f . But we have

Pθi(P) = (∇Pθ
i) + θi(∇PP) = θi(P)

since ∇Pθ
i = 0 and ∇PP = P . So each of the θi(P) is a homogenous linear

function in terms of the normal coordinates.
This means that we can write θi(P) =

∑
aijx

j for some constants aij Thus

P =
∑
ij

aijx
jEi =

∑
k

xk∂k,

We want to show that aij = δij . By definition, Ei(0) = ∂i(0). If we write

|x|2 =
∑

i

xi2

we have ∑
ij

aijx
jEj =

∑
ij

xj∂i +O(|x|2)

and also ∑
ij

aijx
jEi = P =

∑
j

xj∂j .

The only way that two linear expressions can agree up to terms quadratic or
higher is if they are equal. so we have proved that (6.6) holds.

6.5 Gauss’ lemma.

Now suppose thatM is a semi-Riemannian manifold, and∇ is the corresponding
Levi-Civita connection. We choose our basis e = (e1, . . . , en) of TMm0 to be
“orthonormal”, so that E = (E1, . . . , En) is an “orthonormal” frame field.
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Since the Ei form an orthonormal frame at each point, it follows from (6.6)
that

〈P,P〉 =
∑

i

εix
2
i . (6.7)

We claim that we also have
〈P, ∂i〉 = εix

i. (6.8)

To prove this observe that

〈P, ∂i〉 =
∑

j

xj〈∂j , ∂i〉 = εix
i +O(|x|2).

So it is enough to show that

P〈P, ∂i〉 = εix
i

in order to conclude (6.8). Now [P, ∂i] = −∂i from the formula (6.4) for P, and
hence

∇P∂i = ∇∂iP − ∂i,

since the torsion of the Levi-Civita connection vanishes. Hence

P〈P, ∂i〉 = 〈∇PP, ∂i〉+ 〈P,∇P∂i〉
= 〈P, ∂i〉+ 〈P,∇∂i

P〉 − 〈P, ∂i〉

=
1
2
∂i〈P,P〉

=
1
2
∂i

∑
i

εix
i2

= εix
i.

In particular, it follows from (6.8) that

〈P, εjxi∂j − εix
j∂i〉 = 0. (6.9)

Now the vector fields
εjx

i∂j − εix
j∂i

correspond, under the exponential map, to the vector fields

εj`
iẽj − εi`

j ẽi

which generate the one parameter group of “rotations” in the ei, ej plane in
TMm0 . These rotations, acting in the tangent space, when applied to any point,
sweep out the “pseudo-sphere” centered at the origin and passing through that
point. Let Sξ be the pseudo-sphere in the tangent space TMm0 passing through
the point ξ ∈ TMm0 and let Σp = exp(Sξ) be its image under the exponential
map. Then we can restate equation (6.9) as

Proposition 9 The radial geodesic through the point p = exp(ξ) is orthogonal
in the Riemann metric to the hypersurface Σp.

This result is known as Gauss’ lemma.
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6.6 Minimization of arc length.

We now specialize to the Riemannian case so that Sξ is an actual sphere in the
Euclidean sense. Let γ : [0, 1] → M be any curve joining m0 to a point m in
the normal neighborhood. In particular, for small values of t the points γ(t) all
lie in the normal neighborhood. Let

d = |x(m)|

i.e. d2 =
∑

i x
i2 in terms of the normal coordinates. We know that d is the

length of the geodesic emanating from m0 and ending at m by the definition of
the exponential map and normal coordinates. We wish to show that

length of γ ≥ d.

In other words, that the geodesic joining m0 to m is the shortest curve joining
m0 to m. Since γ(1) = m we have |γ(1)| = d.

Let T be the first time that |x(γ(t))| ≥ d. (That is, T is the greatest lower
bound of the set of all t for which γ(t) does not lie strictly inside the sphere
of radius d in normal coordinates.) Then γ(T ) must lie on the surface Σ, the
image of the sphere of radius d under the exponential map. It is enough to
prove that curve γ : [0, T ] → M has length ≥ d, where now x(γ(t)) lies inside
the sphere of radius d for all 0 ≤ t < T . By the same argument, we may assume
that |x(γ(t))| > 0 for all t > 0. Then

d =
∫ T

0

d|x(γ(t))|
dt

dt.

Let u denote the unit vector field in the radial direction, defined outside the
origin in the normal coordinates. So u(x) = 1

|x|P(x). Decompose the tangent
vector, γ′(t) into its component along u and its component, τ along the plane
spanned by the vector fields xi∂j − xj∂i. So

γ′(t) = c(t)u(t) + τ(t).

Then ∫ T

0

d|x(γ(t))|
dt

dt =
∫ T

0

c(t)dt ≤
∫ T

0

|c(t)|dt.

On the other hand, u(t) and τ(t) are orthogonal relative to the Riemann metric,
and hence

‖γ′(t)‖2 = |c(t)|2 + ‖τ(t)‖2

so
|γ′(t)| ≥ |c(t)|

and hence

length γ =
∫ T

0

‖γ′(t)‖dt ≥ d

as was to be proved.
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Chapter 7

Special relativity

7.1 Two dimensional Lorentz transformations.

We study a two dimensional vector space with scalar product 〈 , 〉 of signature
+ −. A Lorentz transformation is a linear transformation which preserves the
scalar product. In particular it preserves

||u||2 := 〈u,u〉

(where with the usual abuse of notation this expression can be positive negative
or zero). In particular,every such transformation must preserve the “light cone”
consisting of all u with ||u||2 = 0.

All such two dimensional spaces are isomorphic. In particular, we can choose
our vector space to be R2 with metric given by

||
(
u
v

)
||2 = uv.

The light cone consists of the coordinate axes, so every Lorentz transformation
must carry the axes into themselves or interchange the axes. A transforma-
tion which preserves the axes is just a diagonal matrix. Hence the (connected
component of) the Lorentz group consists of all matrices of the form

(
r 0
0 r−1

)
, r > 0.

So the group is isomorphic to the multiplicative group of the positive real num-

133
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bers. We introduce (t, x) coordinates by

u = t+ x

v = t− x

or(
u
v

)
=

(
1 1
1 −1

)(
t
x

)
so ||

(
t
x

)
||2 = t2 − x2.

Notice that (
1 1
1 −1

)2

= 2
(

1 0
0 1

)
,

so if (
u
v

)
=

(
1 1
1 −1

)(
t
x

)
(
u′

v′

)
=

(
r 0
0 r−1

)(
u
v

)
(
u′

v′

)
=

(
1 1
1 −1

)(
t′

x′

)

then
(

t′

x′

)
=

1
2

(
1 1
1 −1

)(
r 0
0 r−1

)(
1 1
1 −1

)(
t
x

)
Multiplying out the matrices gives(

t′

x′

)
= γ

(
1 w
w 1

)(
t
x

)
(7.1)

where

γ :=
r + r−1

2
(7.2)

w :=
r − r−1

r + r−1
. (7.3)

The parameter w is called the “velocity” and is, of course, restricted by

|w| < 1. (7.4)

We have

1− w2 =
r2 + 2 + r−2 − r2 + 2− r−2

(r + r−1)2

=
4

(r + r−1)2
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so
γ =

1√
1− w2

. (7.5)

Thus w determines γ. Similarly, we can recover r from w:

r =

√
1 + w

1− w
.

So we can use w to parameterize the Lorentz transformations. We write

Lw := γ

(
1 w
w 1

)

7.1.1 Addition law for velocities.

It is useful to express the multiplication law in terms of the velocity parameter.
If

w1 =
r − r−1

r + r−1

w2 =
s− s−1

s+ s−1

then

rs− (rs)−1

rs+ (rs)−1
=

r−r−1

r+r−1 + s−s−1

s+s−1

1 + s−s−1

s+s−1 · r−r−1

r+r−1

so we obtain
Lw1 ◦ Lw2 = Lw where w =

w1 + w2

1 + w1w2
. (7.6)

This is know as the “addition law for velocities”.

7.1.2 Hyperbolic angle.

One also introduces the “hyperbolic angle”, actually a real number, φ by

r = eφ

so
γ = coshφ =

1√
1− w2

and

Lw =
(

coshφ sinhφ
sinhφ coshφ

)
.

Here
w = tanhφ.
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For any
(

t
x

)
with t > 0 and t2 − x2 = 1, we must have t > x and

t− x = (t+ x)−1 so(
t+ x
t− x

)
=
(
r 0
0 r−1

)(
1
1

)
r = t+ x.

This shows that the group of all (one dimensional proper) Lorentz transfor-
mations, {Lw}, acts simply transitively on the hyperbola

||
(

t
x

)
||2 = 1, t > 0.

This means that if
(

t
x

)
and

(
t′

x′

)
are two points on this hyperbola, there

is a unique Lw with

Lw

(
t
x

)
=
(

t′

x′.

)
.

If (
t
x

)
= Lz

(
1
0

)
this means that (

t′

x′

)
= LwLz

(
1
0

)
= LzLw

(
1
0

)
and so

〈
(

t
x

)
,

(
t′

x′

)
〉 = tt′ − xx′ = 〈

(
1
0

)
, Lw

(
1
0

)
〉.

Writing w = tanhφ as above we have

〈u,u′〉 = coshφ, u =
(

t
x

)
u′ =

(
t′

x′

)
,

and φ is called the hyperbolic angle between u and u′.
More generally, if we don’t require ||u|| = ||u′|| = 1 but merely ||u|| >

0, ||u′|| > 0, t > 0, t′ > 0 we define the hyperbolic angle between them to be
the hyperbolic angle between the corresponding unit vectors so

〈u,u′〉 = ||u||||u′|| coshφ.

7.1.3 Proper time.

A material particle is a curve α : τ :7→ α(τ) whose tangent vector α′(τ) has
positive t coordinate everywhere and satisfies

||α′(τ)|| ≡ 1.
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Of course, this fixes the parameter τ up to an additive constant. τ is called the
proper time of the material particle. It is to be thought of as as the “internal
clock” of the material particle. For an unstable particle, for example, it is this
internal clock which tells the particle that its time is up. Let ∂0 denote unit
vector in the t direction,

∂0 :=
(

1
0

)
.

7.1.4 Time dilatation.

Let us write t(τ) for the t coordinate of α(τ) and x(τ) for its x coordinate so
that

α(τ) =
(

t(τ)
x(τ)

)
α′ :=

dα

dτ
=
(
dt/dτ
dxdτ

)
.

We have

dt

dτ
= 〈∂0, α

′〉,

= coshφ

=
1√

1− w2

≥ 1

where

w :=
dx

dt
=

dx/dτ

dt/dτ
(7.7)

is the “velocity” of the particle measured in the t, x coordinate system. Thus
the internal clock of a moving particle appears to run slow in any coordinate
system where it is not at rest. This phenomenon, known as “time dilatation” is
observed all the time in elementary particle physics. For example, fast moving
muons make it from the upper atmosphere to the ground before decaying due
to this effect.

7.1.5 Lorentz-Fitzgerald contraction.

Let α and β be material particles whose trajectories are parallel straight lines.
Once we have chosen a Minkowski basis, we have a notion of “simultaneity”
relative to that basis, meaning that we can adjust the arbitrary additive constant
in the definition of the proper time of each particle so that the two parallel
straight lines are given by

τ 7→
(

aτ
bτ + c

)
, and τ 7→

(
aτ

bτ + c+ `

)
.

We can then think of the configuration as the motion of the end points of a
“rigid rod” of length `. The length ` depends on our notion of simultaneity. For
example, suppose we apply a Lorentz transformation Lw to obtain a = 1, b = 0
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(and readjust the additive constants in the clocks to achieve simultaneity). The
corresponding frame is called the rest frame of the rod and the its length, `rest,
called the rest length of the rod is related to our “laboratory frame” by

`rest = (coshφ) `lab

or
`lab =

√
1− w2`rest, (7.8)

a moving object “contracts” in the direction of its motion. This is the Lorentz-
Fitzgerald contraction which was discovered before special relativity in the con-
text of electromagnetic theory, and can be considered as a forerunner of special
relativity. As an effect in the laboratory, it is not nearly as important as time
dilatation.

7.1.6 The reverse triangle inequality.

Consider any interval, say [0, T ], on the t axis, and let 0 < s < T . The curve
t2 − x2 = s2 bends away from the origin. In other words, all other vectors with
t coordinate equal to s have smaller Minkowski length:

||
(
s
x

)
||2 < s2, x 6= 0.

The length of any timelike vector u :=
(
s
x

)
is < s if x 6= 0. Similarly,

the Minkowski length of the (timelike) vector, v, joining
(
s
x

)
to
(
T
0

)
is

< T − s. We conclude that

||u + v|| ≥ ||u||+ ||v|| (7.9)

with equality holding only if u and v actually lie on the t axis. There is nothing
special in this argument about the t axis, or the fact that we are in two dimen-
sions. It holds for any pair of forward timelike vectors, with equality holding if
and only if the vectors are collinear. Inequality (7.9) is known as the reverse
triangle inequality. The classical way of putting this is to say that the time
measured by a clock moving along a (timelike) straight line path joint the events
P and Q is longer than the time measured along any (timelike forward) broken
path joining P to Q. It is also called the “twin effect”. The twin moving along
the broken path (if he survives the bumps) will be younger than the twin who
moves along the uniform path. This was known as the twin paradox. It is no
paradox, just an immediate corollary of the reverse triangle inequality.

7.1.7 Physical significance of the Minkowski distance.

We wish to give an interpretation of the Minkowski square length (due originally

to Robb (1936)) in terms of signals and clocks. Consider points
(
t1
0

)
and
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t2
0

)
on the t axis which are joined to the point

(
t
x

)
by light rays (lines

parallel to t = x or t = −x). Then (assuming t2 > t > t1)

t− t1 = x so
t1 = t− x and

t2 − t = x so
t2 = t+ x

hence
t1t2 = t2 − x2. (7.10)

This equation has the following significance: Point P =
(

0
0

)
at rest or in

uniform motion wishes to communicate with point Q =
(

t
x

)
. It records the

time, t1 on its clock when a light signal was sent to Q and the time t2 when the
answer was received (assuming an instantaneous response.) Even though the
individual times depend on the coordinates, their product, t1t2 gives the square
of the Minkowski norm of the vector joining P to Q.

7.1.8 Energy-momentum

In classical mechanics, a momentum vector is usually considered to be an ele-
ment of the cotangent space, i.e the dual space to the tangent space. Thus in
our situation, where we identify all tangent spaces with the Minkowski plane
itself, a “momentum” vector will be a row vector of the form µ = (E, p). For
a material particle the associated momentum vector, called the “energy mo-
mentum vector” in special relativity, is a row vector with the property that the
evaluation map

v 7→ µ(v)

for any vector v is a positive multiple of the scalar product evaluation

v 7→ 〈v, α′(τ)〉.

In other words, evaluation under µ is the same as scalar product with mα′ where
m, is an invariant of the material particle known as the rest mass. The rest
mass is an invariant of the particle in question, constant throughout its motion.
So in the rest frame of the particle, where α′ = ∂0, the energy momentum vector
has the form (m, 0). Here m is identified (up to a choice of units, and we will
have more to say about units later) with the usual notion of mass, as determined
by collision experiments, for example. In a general frame we will have

µ = (E, p), E2 − p2 = m2. (7.11)

In this frame we have
p/E = w (7.12)
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where w is the velocity as defined in (7.7). We can solve equations (7.11) and
(7.12) to obtain

E =
m√

1− w2
(7.13)

p =
mw√
1− w2

. (7.14)

For small values of w we have the Taylor expansion

1√
1− w2

= 1 +
1
2
w2 + · · ·

and so we have

E
.= m+

1
2
mw2 + · · · (7.15)

p
.= mw +

1
2
mw3 + · · · . (7.16)

The first term in (7.16) looks like the classical expression p = mw for the
momentum in terms of the velocity if we think of m as the classical mass,
and the second term in (7.15) looks like the classical expression for the kinetic
energy. We are thus led to the following modification of the classical definitions
of energy and momentum. Associated to any object there is a definite value of
m called its rest mass. If the object is at rest in a given frame, its rest mass
coincides with the classical notion of mass; when it is in motion relative to a
given frame, its energy momentum vector is of the form (E, p) where E and p are
determined by equations (7.13) and (7.14). We have been implicitly assuming
that m > 0 which implies that |w| < 1. We can supplement these particles by
particles of rest mass 0 whose energy momentum vector satisfy (7.11), so have
the form (E,±E). These correspond to particles which move along light rays
x = ±t. The law of conservation of energy momentum says that in any collision
the total energy momentum vector is conserved.

7.1.9 Psychological units.

Our description of two dimensional Minkowski geometry has been in terms of
“natural units” where the speed of light is one. Points in our two dimensional
space time are called events. They record when and where something happens.
If we record the total events of a single human consciousness (say roughly 70
years measured in seconds) and several thousand meters measured in seconds,
we get a set of events which is enormously stretched out in one particular time
direction compared to space direction, by a factor of something like 1018. Being
very skinny in the space direction as opposed to the time direction we tend to
have a preferred splitting of spacetime with space and time directions picked
out, and to measure distances in space with much smaller units, such as meters,
than the units we use (such as seconds) to measure time. Of course, if we use a
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small unit, the corresponding numerical value of the measurement will be large;
in terms of human or “ordinary units” space distances will be greatly magnified
in comparison with time differences. This suggests that we consider variables T
and X related to the natural units t and x by T = c−1t, X = x or(

T
X

)
=
(
c−1 0
0 1

)(
t
x

)
.

The light cone |t| = |x| goes over to |X| = c|T | and we say that the “speed of
light is c in ordinary units”. Similarly, the time-like hyperbolas t2− x2 = k > 0
become very flattened out and are almost the vertical lines T =const., lines
of “simultaneity”. To find the expression for the Lorentz transformations in
ordinary units, we must conjugate the Lorentz transformation, L, by the matrix(
c−1 0
0 1

)
so

M =
(
c−1 0
0 1

)
L

(
c 0
0 1

)

=
(

coshφ c−1 sinhφ
c sinhφ coshφ

)

= γ

(
1 c−1w
cw 1

)
,

where L = Lw. Of course w is a pure number in natural units. In psychological
units we must write w = v/c, the ratio of a velocity (in units like meters per
second) to the speed of light. Then

M = Mv = γ

(
1 v

c2

v 1

)
, γ =

1
(1− v2

c2 )1/2
. (7.17)

Since we have passed to new coordinates in which

||
(

T
X

)
||2 = c2T 2 −X2,

the corresponding metric in the dual space will have the energy component
divided by c. As we have used cap for energy and lower case for momentum, we
shall continue to denote the energy momentum vector in psychological units by
(E, p) and we have

||(E, p)||2 =
E2

c2
− p2.

We still must see how these units relate to our conventional units of mass. For
this, observe that we want the second term in (7.15) to look like kinetic energy
when E is replaced by E/c, so we must rescale by m 7→ mc. Thus we get

||(E, p)||2 =
E2

c2
− p2 = m2c2. (7.18)
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So in psychological coordinates we rewrite (7.11)-(7.15) as (7.18) together with

p

E
=

v

c2
(7.19)

E =
mc2

(1− v2/c2)1/2
(7.20)

p =
mv

(1− v2/c2)1/2
(7.21)

E
.= mc2 +

1
2
mv2 + · · · (7.22)

p
.= mv +

1
2
m
v3

c2
+ · · · . (7.23)

Of course at velocity zero we get the famous Einstein formula E = mc2.

7.1.10 The Galilean limit.

In “the limit” c→∞ the transformations Mv become

Gv =
(

1 0
v 1

)
which preserve T and send X 7→ X + vT . These are known as Galilean trans-
formations. They satisfy the more familiar addition rule for velocities:

Gv1 ◦Gv2 = Gv1+v2 .

7.2 Minkowski space.

Since our everyday space is three dimensional, the correct space for special
relativity is a four dimensional Lorentzian vector space. This key idea is due to
Minkowski. In a famous lecture at Cologne in September 1908 he says

Henceforth space by itself, and time by itself are doomed to fade
away into mere shadows, and only a kind of union of the two will
preserve an independent reality.

Much of what we did in the two dimensional case goes over unchanged to
four dimensions. Of course, velocity, w or v, become vectors, w and v as
does momentum, p instead of p. So in any expression a term such as v2 must
be replaced by ||v||2, the three dimensional norm squared, etc.. With this
modification the key formulas of the preceding section go through. We will not
rewrite them. The reverse triangle inequality and so the twin effect go through
unchanged.

Of course there are important differences: the light cone is really a cone,
and not two light rays, the space-like vectors form a connected set, the Lorentz
group is ten dimensional instead of one dimensional. We will study the Lorentz
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group in four dimensions in a later section. In this section we will concentrate
on two-particle collisions, where the relative angle between the momenta gives
an additional ingredient in four dimensions.

7.2.1 The Compton effect.

We consider a photon (a “particle” of mass zero) impinging on a massive particle
(say an electron) at rest. After the collision the the photon moves at an angle,
θ, to its original path. The frequency of the light is changed as a function of the
angle: If λ is the incoming wave length and λ′ the wave length of the scattered
light then

λ′ = λ+
h

mc
(1− cos θ), (7.24)

where h is Planck’s constant and m is the mass of the target particle. The
expression

h

mc
is known as the Compton wave length of a particle of mass m.

Compton derived (7.24) from the conservation of energy momentum as fol-
lows: We will work in natural units where c = 1. Assume Einstein’s formula

Ephoton = hν (7.25)

for the energy of the photon, where ν is the frequency, or equivalently,

Ephoton =
h

λ
(7.26)

where λ is the wave length. Work in the rest frame of the target particle, so
its energy momentum vector is (m, 0, 0, 0). Take the x−axis to be the direction
of the incoming photon, so its energy momentum vector is (h

λ ,
h
λ , 0, 0). Assume

that the collision is elastic so that the outgoing photon still has mass zero and
the recoiling particle still has mass m. Choose the y−axis so that the outgoing
photon and the recoiling particle move in the x, y plane. Then the outgoing
photon has energy momentum ( h

λ′ ,
h
λ′ cos θ, h

λ′ sin θ, 0) while the recoiling parti-
cle has energy momentum (E, px, py, 0) and conservation of energy momentum
together with the assumed elasticity of the collision yield

h

λ
+m =

h

λ′
+ E

h

λ
=

h

λ′
cos θ + px

0 =
h

λ′
sin θ + py

m2 = E2 − p2
x − p2

y.

Substituting the second and third equations into the last gives

E2 = m2 +
h2

λ2
+
h2

λ′2
− 2

h2

λλ′
cos θ



144 CHAPTER 7. SPECIAL RELATIVITY

while the first equation yields

E2 = m2 +
h2

λ2
+
h2

λ′2
+ 2

[
m
h

λ
−m

h

λ′
− h2

λλ′

]
.

Comparing these two equations gives Compton’s formula, (7.24).
Notice that Compton’s formula makes three startling predictions: that the

shift in wavelength is independent of the wavelength of the incoming radiation,
the explicit nature of the dependence of this shift on the scattering angle, and
an experimental determination of h/mc, in particular, if h and c are known, of
the mass, m, of the scattering particle. These were the results of Compton’s
experiment.

It is worth recalling the historical importance of Compton’s experiment
(1923). At the end of the nineteenth century, statistical mechanics, which
had been enormously successful in explaining many aspects of thermodynamics,
yielded wrong, and even non-sensical, predictions when it came to the study of
the electromagnetic radiation emitted by a hot body - the study of “blackbody
radiation”. In 1900 Planck showed that the paradoxes could be resolved and
a an excellent fit to the experimental data achieved if one assumed that the
electromagnetic radiation is emitted in packets of energy given by (7.25) where
h is a constant, now called Planck’s constant, with value

h = 6.26× 10−27erg s.

For Planck, this quantization of the energy of radiation was a property of the
emission process in blackbody radiation. In 1905 Einstein proposed the radical
view that (7.25) was a property of the electromagnetic field itself, and not of any
particular emission process. Light, according to Einstein, is quantized according
to (7.25). He used this to explain the photoelectric effect: When light strikes
a metallic surface, electrons are emitted. According to Einstein, an incoming
light quantum of energy hν strikes an electron in the metal, giving up all its
energy to the electron, which then uses up a certain amount of energy, w, to
escape from the surface. The electron may also use up some energy to reach the
surface. In any event, the escaping electron has energy

E ≤ hν − w

where w is an empirical property of the material. The startling consequence
here is that the maximum energy of the emitted electron depends only on the
frequency of the radiation, but not on the intensity of the light beam. Increas-
ing the intensity will increase the number of electrons emitted, but not their
maximum energy. Einstein’s theory was rejected by the entire physics com-
munity. With the temporary exception of Stark (who later became a vicious
nazi and attacked the theory of relativity as a Jewish plot) physicists could not
accept the idea of a corpuscular nature to light, for this seemed to contradict
the well established interference phenomena which implied a wave theory, and
also contradicted Maxwell’s equations, which were the cornerstone of all of the-
oretical physics. For a typical view, let us quote at length from Millikan (of oil
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drop fame) whose experimental result gave the best confirmation of Einstein’s
predictions for the photoelectric effect. In his Nobel lecture (1924) he writes

After ten years of testing and changing and learning and sometimes
blundering, all efforts being directed from the first toward the accu-
rate experimental measurement of the energies of emission of photo-
electrons, now as a function of temperature, now of wavelength,now
of material (contact e.m.f. relations), this work resulted, contrary to
my own expectation, in the first direct experimental proof in 1914 of
the exact validity, within narrow limits of experimental error, of the
Einstein equation, and the first direct photoelectric determination
of Planck’s h.

But despite Millikan’s own experimental verification of Einstein’s formula for the
photoelectric effect, he did not regard this as confirmation of Einstein’s theory
of quantized radiation. On the contrary, in his paper, “A direct Photoelectric
Determination of Planck’s h” Phy. Rev. 7 (1916)355-388 where he presents his
experimental results he writes:

... the semi-corpuscular theory by which Einstein arrived at his
equation seems at present to wholly untenable....[Einstein’s] bold,
not to say reckless [hypothesis] seems a violation of the very con-
ception of electromagnetic disturbance...[it] flies in the face of the
thoroughly established facts of interference.... Despite... the appar-
ently complete success of the Einstein equation, the physical theory
of which it was designed to be the symbolic expression is found so
untenable that Einstein himself, I believe, no longer holds to it, and
we are in the position of having built a perfect structure and then
knocked out entirely the underpinning without causing the building
to fall. It stands complete and apparently well tested, but without
any visible means of support. These supports must obviously exist,
and the most fascinating problem of modern physics is to find them.
Experiment has outrun theory, or , better, guided by an erroneous
theory, it has discovered relationships which seem to be of the great-
est interest and importance, but the reasons for them are as yet not
at all understood.

Of course, Millikan was mistaken when he wrote that Einstein himself had
abandoned his own theory. In fact, Einstein extended his theory in 1916 to
include the quantization of the momentum of the photon. But for Millikan, as
for most physicists, Einstein’s hypothesis of the light quantum was clearly “an
erroneous theory”.

By the way, it is amusing to compare Millikan’s actual state of mind in
1916 (which was the accepted view of the entire physics community outside of
Einstein) with his fallacious account of it in his autobiography (1950) pp. 100-
101, where he writes about his experimental verification of Einstein’s equation
for the photoelectric effect:
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This seemed to me, as it did to many others, a matter of very great
importance, for it rendered what I will call Planck’s 1912 explosive or
trigger approach to the problem of quanta completely untenable and
proved simply and irrefutedly, I thought, that the emitted electron
that escapes with the energy hν gets that energy by the direct transfer
of hν units of energy from the light to the electron and hence scarcely
permits of any interpretation than that which Einstein had originally
suggested, namely that of the semi-corpuscular or photon theory of
light itself.

Self-delusion or outright mendacity? In general I have found that one can not
trust the accounts given by scientists of their own thought processes, especially
those given many years after the events.

In any event, it was only with the Compton experiment, that Einstein’s
formula, (7.25) was accepted as a property of light itself.

For a detailed history see the book The Compton Effect by Roger H. Stuewer,
Science History Publications, New York 1975, from which I have taken the above
quotes.

7.2.2 Natural Units.

In this section I will make the paradoxical argument that Planck’s constant and
(7.25) have a purely classical interpretation: Like c, Planck’s constant, h, may
be viewed as a conversion factor from natural units to conventional units.

For this I will again briefly call on a higher theory, symplectic geometry.
In that theory, conserved quantities are associated to continuous symmetries.
More precisely, if G is a Lie group of symmetries with Lie algebra g, the moment
map, Φ for a Hamiltonian action takes values in g∗, the dual space of the Lie
algebra. A basis of g determines a dual basis of g∗. In the case at hand, the Lie
algebra in question is the algebra of translation, and the moment map yields
the (total) energy-momentum vector. Hence if we measure translations in units
of length, then the corresponding units for energy momentum should be inverse
length. In this sense the role of Planck’s constant in (7.26) is a conversion factor
from natural units of inverse length to the conventional units of energy. So we
interpret h =6.626×10−27 erg s as the conversion factor from the natural units
of inverse seconds to the conventional units of ergs.

In order to emphasize this point, let us engage in some historical science
fiction: Suppose that mechanics had developed before the invention of clocks.
So we could observe trajectories of particles, their collisions and deflections,
but not their velocities. For instance, we might be able to observe tracks in a
bubble chamber or on a photographic plate. If our theory is invariant under
the group of translations in space, then linear momentum would be an invariant
of the particle; if our theory is invariant under the group of three dimensional
Euclidean motions, the symplectic geometry tells that ||p||, the length of the
linear momentum is an invariant of the particle. In the absence of a notion of
velocity, we might not be able to distinguish between a heavy particle moving
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slowly or a light particle moving fast. Without some way of relating momentum
to length, we would introduce “independent units” of momentum, perhaps by
combining particles in various ways and by performing collision experiments.
But symplectic geometry tells us that the “natural” units of momentum should
be inverse length, and that de Broglie’s equation

||p|| = h

λ
(7.27)

gives Planck’s constant as a conversion factor from natural units to conventional
units. In fact, the crucial experiment was the photo-electric effect, carried out
in detail by Millikan.

The above discussion does not diminish, even in retrospect, from the radical
character of Einstein’s 1905 proposal. Even in terms of “natural units” the
startling proposal is that it is a single particle, the photon, which interacts
with a single particle, the electron to produce the photoelectric effect. It is this
“corpuscular” picture which was so difficult to accept. Furthermore, it is a bold
hypothesis to identify the “natural units” of the photon momentum with the
inverse wave length.

For reasons of convenience physicists frequently prefer to use ~ := h/2π as
the conversion factor.

One way of choosing natural units is to pick some particular particle and
use its mass as the mass unit. Suppose we pick the proton. Then mP , the mass
of the proton is the basic unit of mass, and `P , the Compton wave length of
the proton is the basic unit of length. Also tP , the time it takes for light to
travel the distance of one Compton wave length, is the basic unit of time. The
conversion factors to the cgs system (using ~) are:

mP = 1.672× 10−24g

`P = .211× 10−13cm

tP = 0.07× 10−23sec.

We will oscillate between using natural units and familiar units. Usually, we
will derive the formulas we want in natural units, where the computations are
cleaner and then state the results in conventional units which are used in the
laboratory.

7.2.3 Two-particle invariants.

Suppose that A and B are particles with energy momentum vectors pA and
pB . In any particular frame they have the expression pA = (EA,pA) and pB =
(EB ,pB). We have the three invariants

p2
A = m2

A = E2
A − (pA,pA)

p2
B = m2

B = E2
B − (pB ,pB)

pa · pB = EAEB − (pA,pB).
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For the purpose of this section our notation is that ( , ) refers to the three
dimensional scalar product, a symbol such as pA denotes the energy momentum
(four) vector of particle A, pA · pB denotes the four dimensional scalar product
and we write p2

A for pA · pA. These are all standard notations. The left hand
sides are all invariants in the sense that their computation does not depend
on the choice of frame. Many computations become transparent by choosing
a frame in which some of the expressions on the right take on a particularly
simple form. It is intuitively obvious (and also a theorem) that these are the
only invariants - that any other invariant expression involving the two momenta
vectors must be a function of these three. For example,

(pA + pB)2 = p2
A + 2pA · pB + p2

B

and
(pA − pB)2 = p2

A − 2pA · pB + p2
B .

Here are some examples:

Decay at rest.

Particle A, at rest, decays into particles B and C, symbolically A→ B+C. Find
the energies, and the magnitudes of the momenta and velocities of the outgoing
particles in the rest frame of particle A. Conservation of energy momentum
gives

pA = pB + pC or
pC = pA − pB ,

so
p2

C = p2
A + p2

B − 2pA · pB or
m2

C = m2
A +m2

B − 2mAEB since
pA = (mA, 0, 0, 0).

Solving gives

EB =
m2

A +m2
B −m2

C

2mA
.

Interchanging B and C gives the formula for EC . We have pB = −pC and
E2

B − ||pB ||2 = m2
B . Substituting into the above expression for EB gives

||pB ||2 =
1

4m2
A

(
m4

A +m4
B +m4

C − 2m2
Am

2
C − 2m2

Bm
2
C + 2m2

Am
2
B − 4m2

Am
2
B

)
so

||pB || = ||pC || =
√
λ(m2

A,m
2
B ,m

2
C)

2mA
(7.28)

where λ is the “triangle function”

λ(x, y, z) := x2 + y2 + z2 − 2xy − 2xz − 2yz. (7.29)
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If we now redo the computation in ordinary units keeping track of dividing by
c2 in the energy part of the scalar product and multiplying all m′s by c we get

EB =
m2

A +m2
B −m2

C

2mA
c2 (7.30)

||pB || = ||pC || =

√
λ(m2

A,m
2
B ,m

2
C)

2mA
c. (7.31)

Equation (7.12) becomes

v =
c2

E
p. (7.32)

Taking the magnitudes and using the above formulas for the energies and mag-
nitudes of the momenta give the magnitudes of the velocities of the outgoing
particles. Since our energies are all non-negative, (7.30) shows that decay from
rest can not occur unless mA ≥ mB +mC . (Similarly the expression for||pB ||
would become imaginary if mA < mB +mC .)

Energy, momenta, and velocities in the center of momentum system.

Suppose we have particles B and C with energy momenta pB and pC is some
coordinate system, and we want to find the expression for their energy, momenta,
and velocity in their center of momentum system.

To find these values for particles B and C we can apply the following trick.
Consider an imaginary particle, A, whose energy momentum vector is pB + pC .
Its mass2 is given by

m2
A = m2

B +m2
C + 2pB · pC .

Plugging this value for mA into the formulas of the previous subsection gives
the desired answers.

Colliding beam versus stationary target.

A beam of particles of type A smashes into a stationary target of particles of
type A, in the hope of producing the reaction

A+A 7→ A+A+A+A

where A denotes the antiparticle of A. (All we have to know about the an-
tiparticle is that is has the same mass as A.) What is kinetic energy needed to
produce this reaction?

Let m denote the mass of A. In the laboratory frame, the stationary, target
particle has energy momentum vector (m, 0, 0, 0) while the incoming particle
has energy momentum vector (E,p). Thus before the collision, we have ptot =
(E +m,p) and hence

p2
tot = (E +m)2 − ||p||2.

In the center of momentum frame, the threshold for production of the four
particles will be when there is no energy left over for motion, so they are all four
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at rest. The total energy momentum vector, call it q, for the four particles will
then be q = (4m, 0, 0, 0) in the center of momentum system, hence q2 = (4m)2

and so p2
tot = q2 implies

(E +m)2 − ||p||2 = (4m)2.

But E2 − ||p||2 = m2 so we get

2mE +m2 = 15m2

or
E = 7m.

In ordinary units we would write this as

E = 7mc2.

Now E = mc2+kinetic energy + · · · so approximately 6mc2 of kinetic energy
must be supplied.

On the other hand, if we shoot two beams of particles of type A against one
another, then for the collision, the laboratory frame and the center of momentum
frame coincide, and the incoming total energy momentum vector is (2E, 0, 0, 0)
and our conservation equation becomes 4E = 4m. We thus must supply kinetic
energy equal to about m to each particle, or a total energy of about 2mc2 in
ordinary units. Comparing the two experiments we see that the colliding beam
experiment is more energy efficient (by a factor of three). Today virtually all
new machines for collision experiments are colliders for this reason.

7.2.4 Mandlestam variables.

We consider a two body scattering event with a two body outcome, so

A+B → C +D.

Both the incoming and the outgoing particles can exist in various states, and
it is the role of any quantum mechanical theory to yield a probability ampli-
tude for a pair of incoming states to scatter into a pair of outgoing states. In
general, the states are characterized by various “internal” parameters such as
spin, isospin etc., in addition to their momentum. However we shall consider
the situation where the only important parameters describing the states are
their momenta. So the quantum mechanical theory is to provide the transition
amplitude, T (pA, pB , pC , pD), a complex number such that |T |2 gives the rela-
tive probability of two entering states with energy momentum vectors pA and
pB to scatter to the outgoing states with energy momenta pC and pD. This
looks like a function of four vectors, i.e. of sixteen variables, but Lorentz in-
variance and conservation of energy momentum implies that there are only two
free variables. Indeed, Lorentz invariance implies that T should be a function
of various scalar products p2

A, pA · pB etc., of which there are ten in all. Of
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these, p2
A = m2

A, p
2
B = m2

B , p
2
C = m2

C , and p2
D = m2

D are parameters of the
particles, and hence do not vary, leaving the six products of the form pA · pB

etc. as variables. But these are constrained by conservation of energy momen-
tum, pA + pB = pC + pD which provides four equations, leaving only two of the
products independent. It turns out, for reasons of “crossing symmetry” that is
convenient to use two of the three Mandelstam variables defined by

s := c−2(pA + pB)2 (7.33)
t := c−2(pA − pC)2 (7.34)
u := c−2(pA − pD)2 (7.35)

as independent variables. Now conservation of energy momentum implies that
pA · (pC + pD) = pA · (pA + pB). Hence

s+ t+ u = m2
A +m2

B +m2
C +m2

D (7.36)

gives the relation between the three Mandelstam variables. Although the Man-
delstam variables are important for theoretical work, the parameters that are
measured in the laboratory are incoming and outgoing energies and scattering
angle. It therefore becomes useful to express these laboratory parameters in
terms of the Mandlestam variables.

Energies in terms of s.

By the definition of s, we see that the total energy in the center of momentum
system is given by

ECM
A + ECM

B = ECM
C + ECM

D = c2
√
s. (7.37)

To find the energy of A in the center of momentum system, we again employ
the trick of thinking of a fictitious particle of energy momentum pC +pD (hence
at rest in the CM system and with mass

√
s) decaying into particles A and B

with energy momenta pA and pB and apply (7.30) to obtain

ECM
A =

(s+m2
A −m2

B)c2

2
√
s

. (7.38)

To find the laboratory energy of particle A (where particle B is at rest) we go
through an argument similar to that used in deriving (7.30). As usual we will
do the derivation in a system of where c = 1. We have pB = (mB , 0, 0, 0) and
pA = pC + pD − pB so

m2
A = (pC + pD)2 +m2

B − 2pB · (pC + pD)
= s+m2

B − 2pB(pA + pB)
= s−m2

B − 2mBEA

Solving gives

EA =
s−m2

B −m2
A

2mB
.
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Reverting to general coordinates gives

ELab
A =

(s−m2
A −m2

B)c2

2mB
. (7.39)

Angles in terms of Mandelstam variables.

We will study the special case where mC = mA and mD = mB , for example
when the outgoing and incoming particles are the same. The variable t is called
the momentum transfer. Conservation of energy momentum says that

q := pA − pC = pD − pB

and the definition that
t = q2.

(We work in units where c = 1.) Squaring both sides of pD = pB + q and using
the assumption that mB = mD gives

t = −2pB · q.

In the Laboratory frame where B is at rest so pB = (mB , 0, 0, 0) this becomes

t = −2mB(EA − EC).

Suppose that A is a very light particle, practically of mass zero, so that pA
.=

(||kA||,kA) and pC
.= (||kC ||,kC). Then

t = q2

= (||kA|| − ||kC ||)2 − ||kA − kC ||2

= −2||kA||||kC ||(1− cos θ)
= −4||kA||||kC || sin2 θ/2,

where θ, the scattering angle, is the angle between kA and kC . Substituting
t = −2mB(||kA|| − ||kC ||) into the above expression gives

2mB(||kA|| − ||kC ||) = 4||kA||||kC|| sin2 θ/2

or
||kA||
||kC ||

= 1 + 2
||kA||
mB

sin2 θ/2.

If we assume that ||kA|| is small in comparison to mB then

||kA||
.= ||kC ||

and we get
t
.= −4||kA||2 sin2 θ/2. (7.40)

This formula is for a light particle of moderate energy scattering off a massive
particle.
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The general expression is a bit more messy, but not much. We wish to find
the angle, θ, between the incoming momentum pA and the outgoing momentum
pC in the rest frame of B in terms of the Mandelstam variables and the masses.
In this frame we have

pA · pC = EAEC − ||pA||||pC || cos θ.

So we will proceed in two steps: first to express EA, EC , ||pA||, ||pC || in terms
of the four dimensional scalar products (and the masses) and then to express
the scalar products in terms of the Mandlestam variables. We have

EA =
pA · pB

mB

EC =
pC · pB

mB

||pA|| =
√
E2

A −m2
A

||pC || =
√
E2

C −m2
C so

cos θ =
EAEC − pA · pC√

(E2
A −m2

A)(E2
C −m2

C)
.

If we denote the common value of mA and mC by m we have

cos θ =
(pA · pB)(pC · pB)−m2

BpA · pC√
[(pA · pB)2 −m2

Bm
2][(pC · pB)2 −m2

Bm
2]
. (7.41)

To complete the program observe that it follows from the definitions that

2pA · pB = s−m2
A −m2

B

2pA · pC = m2
A +m2

C − t and
2pC · pB = mA +m2

B − u.

Substituting these values into (7.41) gives us our desired expression.
By the way, equation (7.41) has a nice interpretation in terms of the scalar

product induced on the space of exterior two vectors. We have

(pA ∧ pB) · (pC ∧ pB) = (pA · pC)(pB · pB)− (pA · pB)(pC · pB)
= −[(pA · pB)(pC · pB)−m2

BpA · pC ] while
||pA ∧ pB ||2 = m2

Bm
2
A − (pA · pB)2 and

||pC ∧ pB ||2 = m2
Bm

2
C − (pC · pB)2.

(The two last expressions are negative, since the two plane spanned by two
timelike vectors has signature + - .) We can thus write (7.41) as

cos θ = − (pA ∧ pB) · (pA ∧ pB)√
||pA ∧ pB ||2||pC ∧ pB ||2

. (7.42)
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7.3 Scattering cross-section and mutual flux.

Let us go back to the expression ||pA∧pB ||2 = m2
Bm

2
A− (pA ·pB)2 from the end

of the last section. In terms of a given space time splitting with unit timelike
vector ∂0, we can write

pA = EA∂0 + pA,

pB = EB∂0 + pB so
pA ∧ pB = pA ∧ pB + ∂0 ∧ (EApB − EBpA) and hence

||pA ∧ pB ||2 = ||pA × pB ||2R3 − ||EApB − EBpA||2R3

where × denotes the cross product in R3 and the norms in the last expression
are the three dimensional norms. In a frame where the momenta are aligned,
such as a the CM frame where pA = −pB or the laboratory frame where pB = 0,
we have pA × pB = 0. Recall our relativistic definition of velocity as p/E. So
in a frame where the momenta are aligned we have

||EApB − EBpA||R3 = EAEB ||v||R3 where

v =
1
EA

pA −
1
EB

pB

is the mutual velocity. So in such a frame we have

−||pA ∧ pB ||2 = E2
AE

2
B ||v||2R3 . (7.43)

We want to apply this to the following situation which we first study in a fixed
frame where the momenta are aligned.

A beam of particles of type A impacts on a target of particles of type B and
some events of type f are observed. Let nf denote the number of events of type
f per unit time, so nf has dimensions (time)−1. We assume that the target
density is ρB with dimensions (vol)−1 and the beam density is ρA. We assume
that the beam is well collimated and that all of its particles have approximately
the same momentum, pA. The mutual flux per unit time (at time t)is

v

∫
ρA(t,x)ρB(t,x)d3x

where
v := ||v||R3

and v is the mutual velocity. So the mutual flux has dimensions

(distance)
(time)(vol.)

=
1

(time)(area)
.

Thus
nf

v
∫
ρA(t,x)ρB(t,x)d3x
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has the dimensions of area. Similarly, if we integrate the numerator and denomi-
nator with respect to time, the corresponding quotient will have the dimensions
of area. Let Nf :=

∫
nfdt be the total number of events of type f . Then,

integrating the denominator as well,

σf :=
Nf

v
∫
ρA(x)ρB(x)d4x

(7.44)

is called the total cross-section for events of type f . So it has the dimensions
of area. The convenient unit is the barn (as in “he can’t hit the side of a barn”)
where

1 barn = 10−24 cm2.

The denominator in the expression for the total cross-section is called the
mutual flux. It has a more invariant expression as follows: In the frame where
the target particles are at rest, the “current” of the target particles (a three
form) has the expression

JB = ρBdx ∧ dy ∧ dz

while the current for the beam will have an expression of the form

JA = ρAdx ∧ dy ∧ dz + dt ∧ (jAz
dx ∧ dy + jAy

dz ∧ dx+ jAx
dy ∧ dz).

So
ρAρB = −JA · JB .

Also, in this frame, EAEB = pA · pB . So by (7.43) we have

mutual flux =
∣∣∣∣ ||pA ∧ pB ||
pA · pB

∫
JA · JBd

4x

∣∣∣∣ . (7.45)

It is the function of any dynamical theory in quantum mechanics to make some
predictions about the expected number of events of type f .
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Chapter 8

Die Grundlagen der Physik.

This was the title of Hilbert’s 1915 paper. It sounds a bit audacious, but let us
try to put the ideas in a general context. We need to do a few computations in
advance, so as not to disrupt the flow of the argument.

8.1 Preliminaries.

8.1.1 Densities and divergences.

If we regard Rn as a differentiable manifold, the law for the change of variables
for an integral involves the absolute value of the Jacobian determinant. This
is different from the law of change of variables of a function (which is just
substitution).[ But it is close to the transition law for an n-form which involves
the Jacobian determinant (not its absolute value).] For this reason we can not
expect to integrate functions on a manifold. The objects that we can integrate
are known as densities. We briefly recall two equivalent ways of defining these
objects:

• Coordinate chart description. A density ρ is a rule which assigns to
each coordinate chart (U,α) on M (where U is an open subset of M and
α : U → Rn ) a function ρα defined on α(U) subject to the following
transition law: If (W,β) is a second chart then

ρα(v) = ρβ(β ◦ α−1(v)) · |det Jβ◦α−1 |(v) for v ∈ α(U ∩W ) (8.1)

where Jβ◦α−1 denotes the Jacobian matrix of the diffeomorphism

β ◦ α−1 : β(U ∩ V ) → α(U ∩ V ).

Of course (8.1) is just the change of variables formula for an integrand in
Rn.

• Tangent space description. If V is an n-dimensional vector space, let
| ∧V ∗| denote the space of (real or complex valued) functions of n-tuplets
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of vectors which satisfy

σ(Av1, . . . , Avn) = |detA|σ(v1, . . . , vn)). (8.2)

The space | ∧ V ∗| is clearly a one-dimensional vector space. A density ρ
is then a rule which assigns to each x ∈M an element of | ∧ TM∗

x |.

The relation between these two descriptions is the following: Let ρ be a density
according to the tangent space description. Thus ρx ∈ |∧TM∗

x | for every x ∈M .
Let (U,α) be a coordinate chart with coordinates x1, . . . , xn. Then on U we have
the vector fields

∂

∂x1
, . . . ,

∂

∂xn
.

We can then evaluate ρx on the values of these vector fields at any x ∈ U , and
so define

ρα(α(x)) = ρx

((
∂

∂x1

)
x

, . . . ,

(
∂

∂xn

)
x

)
.

If (W,β) is a second coordinate chart with coordinates y1, . . . , yn then on U ∩W
we have

∂

∂xj
=
∑ ∂yi

∂xj

∂

∂yi

and

Jβ◦α−1 =
(
∂yi

∂xj

)
so (8.1) follows from (8.2).

If (U,α) is a coordinate chart with coordinates x1, . . . , xn then the density
defined on U by ρα ≡ 1, that is by

ρx

((
∂

∂x1

)
x

, . . . ,

(
∂

∂xn

)
x

)
= 1 ∀ x ∈ U

is denoted by dx. Every other density then has the local description Gdx on U
where G is a function.

If φ : N →M is a diffeomorphism and if ρ is a density on M , then the pull
back φ∗ρ is the density on N defined by

(φ∗ρ)z(v1, . . . , vn) := ρφ(z)(dφz(v1), . . . , dφz(vn)) z ∈ N, v1, . . . , vn ∈ TNz.

(It is easy to check that this is indeed a density, i.e. that (8.2) holds at each
z ∈ N . )

In particular, if X is a vector field on M generating a one parameter group

t 7→ φt = exp tX

of diffeomorphisms, we can form the Lie derivative

DXρ :=
d

dt
φ∗t ρ|t=0.
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We will need a local description of this Lie derivative. We can derive such a
local description from Weil’s formula for the Lie derivative of a differential form
by the following device: Suppose that the manifold M is orientable and that
we have chosen an orientation of M . This means that we have chosen a system
of coordinate charts such that all the Jacobian determinants det Jβ◦α−1 are
positive. Relative to this system of charts, we can drop the absolute value sign
in (8.1) since det Jβ◦α−1 > 0. But (8.1) without the absolute value signs is just
the transition law for an n-form on the n-dimensional manifold M . In other
words, once we have chosen an orientation on an orientable manifold M we
can identify densities with n-forms. A fixed chart (U,α) carries the orientation
coming from Rn and our identification amounts to identifying the density dx
with the n-form dx1 ∧ · · · ∧ dxn.

If τ is an n-form on an n-dimensional manifold then Weil’s formula

DXτ = i(X)dτ + di(X)τ

reduces to
DXτ = di(X)τ

since dτ = 0 as there are no non-zero (n+1) forms on an n-dimensional manifold.
If

X = X1 ∂

∂x1
+ · · ·+Xn ∂

∂xn

and
τ = Gdx1 ∧ · · · ∧ dxn

in terms of local coordinates then an immediate computation gives

di(X)τ =

(
n∑

i=1

∂i(GXi)

)
dx1 ∧ · · · ∧ dxn (8.3)

where
∂i :=

∂

∂xi
.

It is useful to express this formula somewhat differently. It makes no sense
to talk about a numerical value of a density ρ at a point x since ρ is not a
function. But it does make sense to say that ρ does not vanish at x, since if
ρα(α(x)) 6= 0 then (8.1) implies that ρβ(β(x)) 6= 0. Suppose that ρ is a density
which does not vanish anywhere. Then any other density on M is of the form
f ·ρ where f is a function. If X is a vector field, so that DXρ is another density,
then DXρ is of the form fρ where f is a function, called the divergence of the
vector field X relative to the non-vanishing density ρ and denoted by divρ(X).
In symbols,

DXρ = (divρ(X)) · ρ.
We can then rephrase (8.3) as saying that

divρ(X) =
1
G

n∑
i=1

∂i(GXi) (8.4)
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in a local coordinate system where

X = X1∂1 + · · ·+Xn∂n

is the local expression for X and
Gdx

is the local expression for ρ.

8.1.2 Divergence of a vector field on a semi-Riemannian
manifold.

Suppose that g is a semi-Riemann metric on an n− dimensional manifold, M .
Then g determines a density, call it g, which assigns to every n tangent vectors,
ξ1, . . . , ξn at a point x the “volume” of the parallelepiped that they span:

g : ξ1, . . . , ξn 7→ |det (〈ξi, ξj〉) |
1
2 . (8.5)

If we replace the ξi by Aξi where A : TMx → TMx the determinant is replaced
by

det((Aξi, Aξj)) = det (A((ξi, ξj))A∗) = (detA)2 det((ξi, ξj))

so we see that (8.2) is satisfied. So g is indeed a density, and since the metric is
non-singular, the density g does not vanish at any point.

So if X is a vector field on M , we can consider its divergence divg(X) with
respect to g. Since g will be fixed for the rest of this subsection, we may drop
the subscript g and simply write div X. So

divX · g = DXg. (8.6)

On the other hand, we can form the covariant differential of X with respect
to the connection determined by g,

∇X.

It assigns an element of Hom (TMp, TMp) to each p ∈M according to the rule

ξ 7→ ∇ξX.

The trace of this operator is a number, assigned to each point, p, i.e. a function
known as the “contraction” of ∇X, so

C(∇X) := f, f(p) := tr(ξ 7→ ∇ξX).

We wish to prove the following formula

divX = C(∇X). (8.7)

We will prove this by computing both sides in a coordinate chart with coordi-
nates, say, x1, . . . , xn. Let dx = dx1dx2 · · · dxn denote the standard density (the
one which assigns constant value one to the ∂1, . . . , ∂n, ∂i := ∂/∂xi). Then

g = Gdx, G = |det(〈∂i, ∂j〉)|
1
2 = (εdet(〈∂i, ∂j〉))

1
2
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where
ε := sgn det(〈∂i, ∂j〉).

Recall the local formula (8.4) for the divergence:

divX =
1
G

∑
i

∂i(XiG).

Write
∆ := det(〈∂i, ∂j〉)

so

1
G
∂iG =

1√
ε∆

1
2
√
ε∆

∂(ε∆)
∂xi

=
1
2

1
∆
∂∆
∂xi

independent of whether ε = 1 or −1. To compute this partial derivative, let us
use the standard notation

gij := 〈∂i, ∂j〉

so
∆ = det(gij) =

∑
j

gij∆ij

where we have expanded the determinant along the i−th row and the ∆ij are
the corresponding cofactors. If we think of ∆ as a function of the n2 variables,
gij then, since none of the ∆ik (for a fixed i) involve gij , we conclude from the
above cofactor expansion that

∂∆
∂gij

= ∆ij (8.8)

and hence by the chain rule that

∂∆
∂xk

=
∑
ij

∆ij ∂gij

∂xk
.

But
1
∆

(∆ij) = (gij)
−1
,

the inverse matrix of (gij), which is usually denoted by

(gkl)

so we have
∂∆
∂xk

= ∆
∑
ij

gij ∂gij

∂xk
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or
1
G
∂kG =

1
2

∑
ij

gij ∂gij

∂xk
.

Recall that

Γa
bc :=

1
2

∑
r

gar

(
∂grb

∂xc
+
∂grc

∂xb
− ∂gbc

∂xr

)
so ∑

Γa
ba =

1
2

∑
ar

gar ∂gar

∂xb

or ∑
a

Γa
ka =

1
G

∂G

∂xk
. (8.9)

On the other hand, we have

∇∂iX =
∑ ∂Xj

∂xi
∂j +

∑
Γj

ikX
k∂k

so

C(∇X) =
∑ ∂Xj

∂xj
+

1
G

∑
Xj ∂G

∂xj
,

proving (8.7).
For later use let us go over one step of this proof. From (8.8) we can conclude,

as above, that
∂G

∂gij
=

1
2
Ggij . (8.10)

8.1.3 The Lie derivative of of a semi-Riemann metric.

We wish to prove
LV g = S∇(V ↓). (8.11)

The left hand side of this equation is the Lie derivative of the metric g with
respect to the vector field V . It is a rule which assigns a symmetric bilinear
form to each tangent space. By definition, it is the rule which assigns to any
pair of vector fields, X and Y , the value

(LV g)(X,Y ) = V 〈X,Y 〉 − 〈[V,X], Y 〉 − 〈X, [V, Y ]〉.

The right hand side of (8.11) means the following: V ↓ denotes the linear
differential form whose value at any vector field Y is

(V ↓)(Y ) := 〈V, Y 〉.

In tensor calculus terminology, ↓ is the “lowering operator”, and it commutes
with covariant differential. Since ↓ commutes with ∇, we have

∇(V ↓)(X,Y ) = ∇X(V ↓)(Y ) = 〈∇XV, Y 〉.
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The symbol S in (8.11) denotes symmetric sum, so that the right hand side of
(8.11) when applied to X,Y is

〈∇XV, Y 〉+ 〈∇Y V,X〉.

But now (8.11) follows from the identities

LV 〈X,Y 〉 = V 〈X,Y 〉 = 〈∇V X,Y 〉+ 〈X,∇V Y 〉
∇V X − [V,X] = ∇XV

∇V Y − [V, Y ] = ∇Y V.

8.1.4 The covariant divergence of a symmetric tensor field.

Let T be a symmetric “contravariant ” tensor field (of second order), so that in
any local coordinate system T has the expression

T =
∑

T ij∂i∂j , T ij = T ji.

If θ is a linear differential form, then we can “contract” T with θ to obtain a
vector field, T · θ: In local coordinates, if

θ =
∑

aidx
i

then
T · θ =

∑
T ijaj∂i.

We can form the covariant differential , ∇T which then assigns to every linear
differential form a linear transformation of the tangent space at each point, and
then form the contraction, C(∇T). (Since T is symmetric, we don’t have to
specify on “which of the upper indices” we are contracting.) We define

divT := C(∇T),

called the covariant divergence of T. It is a vector field. The purpose of this
section is to explain the geometrical significance of the condition

divT = 0. (8.12)

If S is a “covariant ” symmetric tensor field so that

S =
∑

Sijdx
idxj

in local coordinates, let S • T denote the double contraction. It is a function,
given in local coordinates by

S •T =
∑

SijT
ij .
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Thus T can be regarded as a linear function on the space of all covariant sym-
metric tensors of compact support by the rule

S 7→
∫

M

S •Tg,

where g is the volume density associated to g. Let V be a vector field of compact
support. Then LV g is a symmetric tensor of compact support. We claim

Proposition 10 Equation (8.12) is equivalent to∫
M

(LV g) •Tg = 0 (8.13)

for all vector fields V of compact support.

Proof. Let θ := V ↓ so T · θ is a vector field of compact support, and so∫
M

C(∇(T · θ))g =
∫

M

LT·θg = 0

by the divergence theorem. (Recall our notation: the symbol · denotes a “single”
contraction, so that T · θ is a vector field. )

On the other hand,

∇(T · θ) = (∇T) · θ + T · ∇θ.

Apply the contraction, C:

2C(T · ∇θ) = 2T • ∇θ
= T • LV g,

using the fact that T is symmetric and (8.11). So

2T • ∇V ↓= T • LV g

and and hence
∫

M
T • LV gg = 0 for all V of compact support if and only if∫

M
(div T · θ)g = 0 for all θ of compact support. If div T 6≡ 0, we can find a

point p and a linear differential form θ such that div T · θ(p) > 0 at some point,
p. Multiplying θ by a blip function φ if necessary, we can arrange that θ has
compact support and divT ≥ 0 so that

∫
M

(div T · θ)g > 0.
Let us write `T for the linear function on the space of smooth covariant

tensors of compact support given by

`T(S) :=
∫

M

S •Tg.

We can rewrite (8.13) as

`(LV g) = 0 ∀V of compact support (8.14)
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when ` = `T.
We can ask about condition (8.14) for different types of linear functions, `.

For example, consider a “delta tensor concentrated at a point”, that is a linear
function of the form

`(S) = S(p) • t

where t is a (“contravariant”) symmetric tensor defined at the point p ∈M . We
claim that no (non-zero) linear function of this form can satisfy (8.14). Indeed,
let W be a vector field of compact support and let φ be a smooth function which
vanishes at p. Set V = φW .Then

∇V ↓= dφ⊗W ↓ +φ∇W ↓

and the second term vanishes at p. Therefore condition (8.14) says that

0 = t • (dφ(p)⊗W ↓ (p)) = [t ·W ↓ (p)] · dφ(p).

This says that the tangent vector t · (W ↓)(p) yields zero when applied to the
function φ:

t · (W ↓)(p)φ = 0.

This is to hold for all φ vanishing at p, which implies that

t · (W ↓)(p) = 0.

Now given any tangent vector, w ∈ TMp we can always find a vector field W
of compact support such that W (p) = w. Hence the preceding equation implies
that t · w ↓= 0 ∀w ∈ TMp which implies that t = 0.

Let us turn to the next simplest case, a “delta tensor concentrated on a
curve”. That is, let γ : I → M be a smooth curve and let τ be a continuous
function which assigns to each s ∈ I a symmetric contravariant tensor, τ(s) at
the point γ(s). Define the linear function `τ on the space of covariant symmetric
tensor fields of compact support by

`τ (S) =
∫

I

S(γ(s)) • τ(s)ds.

Let us examine the implications of (8.14) for ` = `τ . Once again, let us choose
V = φW , this time with φ = 0 on γ. We then get that∫

I

[τ(s) ·W ↓ (s)]φ(s)ds = 0

for all vector fields W and all functions φ of compact support vanishing on γ.
This implies that for each s, the tangent vector τ(s) ·w ↓ is tangent to the curve
γ for any tangent vector w at γ(s). (For otherwise we could find a function φ
which vanished on γ and for which [τ(s) · w]φ 6= 0. By extending w to a vector
field W with W (γ(s)) = w and modifying φ if necessary so as to vanish outside
a small neighborhood of γ(s) we could then arrange that the integral on the left
hand side of the preceding equation would not vanish.)
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The symmetry of τ(s) then implies that τ(s) = c(s)γ′(s) ⊗ γ′(s) for some
scalar function, c. (Indeed, in local coordinates suppose that γ′(s) =

∑
vi∂iγ(s)

and τ(s) =
∑
tij∂iγ(s)∂jγ(s). Applied successively to the basis vectors w = ∂iγ(s)

we conclude that tij = civj and hence from tij = tji that tij = ctji.)
Let us assume that τ(s) 6= 0 so c(s) 6= 0. Changing the parameterization

means multiplying γ′(s) by a scalar factor, and hence multiplying τ by a positive
factor. So by reparametrizing the curve we can arrange that τ = ±γ′ ⊗ γ′.
To avoid carrying around the ± sign, let us assume that τ = γ′ ⊗ γ′. Since
multiplying τ by −1 does not change the validity of (8.14), we may make this
choice without loss of generality.

Again let us choose V = φW , but this time with no restriction on φ, but let
us use the fact that τ(s) = γ′(s)⊗ γ′(s). We get

τ · ∇V ↓ = τ · [dφ⊗W ↓ +φ∇W ↓]
= (γ′φ)〈γ′,W 〉+ φ〈∇γ′W,γ

′〉
= γ′ (φ〈γ′,W 〉)− φ〈W,∇γ′γ

′〉.

The integral of this expression must vanish for every vector field and every
function φ of compact support. We claim that this implies that ∇γ′γ

′ ≡ 0, that
γ is a geodesic! Indeed, suppose that ∇γ′(s)γ

′(s) 6= 0 for some value, s0, of s.
We could then find a tangent vector w at γ(s0) such that 〈w,∇γ′(s0)γ

′(s0)〉 = 1
and then extend w to a vector field W , and so 〈W∇γ′(s)γ

′(s)〉 > 0 for all s near
s0. Now choose φ ≥ 0 with φ(s0) = 1 and of compact support. Indeed, choose
φ to have support contained in a small neighborhood of γ(s0), so that∫

I

γ′ (φ〈γ′,W 〉) = (φ〈γ′,W 〉) (γ(b))− (φ〈γ′,W 〉) (γ(a)) = 0

where a < s0 < b are points in I with γ(b) and γ(a) outside the support of φ.
We are thus left with

`τ (LφW (g)) = −
∫ b

a

φ〈W,∇γ′γ
′〉ds < 0.

Conversely, if γ is a geodesic and τ = γ′ ⊗ γ′ then

τ • ∇V ↓= 〈∇γ′V, γ
′〉 = γ′〈V, γ′〉 − 〈V,∇γ′γ

′〉.

The second term vanishes since γ is a geodesic, and the integral of the first term
vanishes so long as γ extends beyond the support of V or if γ is a closed curve.
We have thus proved a remarkable theorem of Einstein, Infeld and Hoffmann
(1938)

Theorem 1 If τ is a continuous (contravariant second order) symmetric tensor
field along a curve γ whose associated linear function, `τ satisfies (8.14) then
we can reparametrize γ so that it becomes a geodesic and so that τ = ±γ′ ⊗ γ′.
Conversely, if τ is of this form and if γ is unbounded or closed then `τ satisfies
(8.14).

(Here “unbounded” means that for any compact region, K, there are real num-
bers a and b such that γ(s) 6∈ K, ∀S > b or < a.)
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8.2 Varying the metric and the connection.

We will regard the space of smooth covariant symmetric tensor fields S such
as those we considered in the preceding section as the “compactly supported
piece” of the tangent space to a given metric g. This is to be interpreted in
the following sense: Let M denote the space of all semi-Riemann metrics on a
manifold, M , say all with a fixed signature. If g ∈ M is a particular metric,
and if S is a compactly supported symmetric tensor field, then

g + tS

is again a metric of the same signature for sufficiently small |t|. So we can regard
S as the infinitesimal variation in g along this “line segment” of metrics. On
the other hand, if gt is any curve of metrics depending smoothly on t, and with
the property that gt = g outside some fixed compact set, K, then

S :=
dgt

dt |t=0

is a symmetric tensor field of compact support.
So we will denote the space of all compactly supported smooth fields of

symmetric covariant two tensors by

TMcompact.

Notice that we have identified this fixed vector space as the (compactly sup-
ported) tangent space at every point, g in the space of metrics. We have “triv-
ialized” the tangent bundle to M.

The space of all (symmetric) connections also has a natural trivialization.
Indeed, let ∇ and ∇′ be two connections. Then

∇fXY −∇′
fXY = f∇XY − f∇′

XY.

In other words, the map

A : (X,Y ) = ∇XY −∇′
XY

is a tensor; its value at any point p depends only on the values of X and Y at
p. We can say that

A = ∇−∇′

is a tensor field, of type T ∗⊗T ∗⊗T (one which assigns to every tangent vector
at p ∈M an element of Hom(TMp, TMp)).

Conversely, if A is any such tensor field and if ∇′ is any connection then
∇ = ∇′ + A is another connection. Thus the space of all connections is an
affine space whose associated linear space is the space of all A′s. We will be
interested in symmetric connections, in which case the A′s are restricted to being
symmetric: AXZ = AZX. (Check this as an exercise.) Let A denote the space
of all such (smooth) symmetric A and let C denote the space of all symmetric
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connections. Then we can identify the “tangent space” to C at any connection
∇ with the space A, because in any affine space we can identify the tangent
space at any point with the associated linear space. In symbols, we may write

TC∇ = A,

independent of the particular ∇. Once again we will be interested in variations
of compact support in the connection, so we will want to consider the space

Acompact

consisting of tensor fields of our given type of compact support.
The Levi-Civita map assigns to every Riemann metric a symmetric connec-

tion. So it can be considered as a map, call it L.C., from metrics to connections:

L.C. : M→ C.

The value of L.C.(g) at any point depends only on gij and its first derivatives at
the point, and hence the differential of the Levi-Civita map can be considered
as a linear map

d(L.C.)g : TMcompact → Acompact.

(The spaces on both sides are independent of g but the differential definitely
depends on g.) In what follows, we will let A denote the value of this differential
at a given g and S ∈ TMcompact:

A := d(L.C.)g[S].

As an exercise, you should compute the expression for A in terms of ∇S where
∇ = L.C.(g) is the Levi-Civita connection associated to g.

The map R associates to every metric its Riemann curvature tensor. The
map Ric associates to every metric its Ricci curvature. For reasons that will
soon become apparent, we need to compute the differentials of these maps.

The curvature is expressed in terms of the connection:

RX,Y = ∇[X,Y ] − [∇X ,∇Y ].

So we may think of the right hand side of this equation as defining a map,
curv, from the space of connections to the space of tensors of curvature type.
Differentiating this expression using Leibniz’s rule gives, for any A ∈ A,

(dcurv∇[A]) (X,Y ) = A[X,Y ] −AX∇Y −∇XAY +AY∇X +∇Y AX .

We have
[X,Y ] = ∇XY −∇Y X

so
A[X,Y ] = A∇XY −A∇Y X .
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On the other hand, the covariant differential, ∇A of the tensor field A with
respect to the connection, ∇ is given by

(∇A)(X,Y )Z = ∇X(AY Z)−A∇XY Z −AY∇XZ

or, more succinctly,

(∇A)(X,Y ) = ∇XAY −A∇XY −AY∇X .

From this we see that

(dcurv∇[A]) (X,Y ) = (∇A)(Y,X)− (∇A)(X,Y ).

If we let ∇̃A denote the tensor obtained from ∇A by ∇̃A(X,Y ) = ∇A(Y,X)
we can write this equation even more succinctly as

dcurv∇[A] = ∇̃A−∇A.

If we substitute A = d(L.C.)g[S] into this equation we get, by the chain rule,
the value of dRg[S]. Taking the contraction, C, which yields the Ricci tensor
from the Riemann tensor, we obtain

dRicg[S] = C(∇̃A−∇A).

Let ĝ denote the contravariant symmetric tensor corresponding to g, the
scalar product induced by g on the cotangent space at each point. Thus, for
example, the scalar curvature, S, is obtained from the Ricci curvature by con-
traction with ĝ:

S = ĝ • Ric.

Contracting the preceding equation with ĝ and using the fact that ∇ commutes
with contraction with ĝ and with C we obtain

ĝ • dRicg[S] = C(∇V )

where V is the vector field

V := C(A) ↑ −ĝ ·A.

We have C(∇V ) = divV . Also V has compact support since S does. Hence we
obtain, from the divergence theorem, the following important result:∫

M

ĝ • dRicg[S] g = 0. (8.15)

8.3 The structure of physical laws.

8.3.1 The Legendre transformation.

Let f be a function of one real variable. We can consider the map t 7→ f ′(t) which
is known as the Legendre transformation, or the “point slope transformation”,
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L(f), associated to f . For example, if f = 1
2kt

2 then the associated Legendre
transformation is the linear map t 7→ kt. As for any transformation, we might
be interested in computing its inverse. That is, find the (or a) point t with a
given value of f ′(t).

For a function, f , of two variables we can make the same definition and pose
the same question: Define L(f) as the map(

x
y

)
7→ (∂f/∂x, ∂f/∂y).

Given (a, b) we may ask to solve the equations

∂f/∂x = a

∂f/∂y = b

for
(
x
y

)
.

The general situation is as follows: Suppose that M is a manifold whose
tangent bundle is trivialized, i.e. that we are given a smooth identification of
TM with M×V, all the tangent spaces are identified with a fixed vector space,
V. Of course this also gives an identification of all the cotangent spaces with the
fixed vector space V∗. In this situation, if F is a function on M, the associated
Legendre transformation is the map

L(F ) : M→ V∗, x 7→ dFx.

In particular, given ` ∈ V∗, we may ask to find x ∈M which solves the equation

dFx = `. (8.16)

This is the “source equation” of physics, with the caveat that the function F
need not be completely defined. Nevertheless, its differential might be defined,
provided that we restrict to “variations with compact support” as is illustrated
by the following example:

In Newtonian physics, the background is Euclidean geometry and the objects
are conservative force fields which are linear differential forms that are closed.
With a mild loss of generality let us consider “potentials” instead of force fields,
so the objects are functions, φ on Euclidean three space. Our space M con-
sists of all (smooth) functions. Since M is a vector space, its tangent space is
automatically identified with M itself, so V = M. The force field associated
with the potential φ is −dφ, and its “energy density” at a point is one half the
Euclidean length2. That is, the density is given by

1
2
(φ2

x + φ2
y + φ2

z)

where subscript denotes partial derivative. We would like to define the function
F to be the “total energy”

F (φ) =
1
2

∫
R3

(φ2
x + φ2

y + φ2
z)dxdydz
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but there is no reason to believe that this integral need converge. However,
suppose that s is a smooth function of compact support, K. Thus s vanishes
outside the closed bounded set, K. For any bounded set, B, the integral

FB(φ) :=
1
2

∫
B

(φ2
x + φ2

y + φ2
z)dxdydz

converges, and the derivative

dFB [φ+ ts]
dt |t=0

=
∫
R3

(φxsx + φysy + φzsz)dxdydz

exists and is independent of B so long as B ⊃ K. So it is reasonable to define
the right hand side of this equation as dFφ evaluated at s:

dFφ[s] :=
∫
R3

(φxsx + φysy + φzsz)dxdydz

even though the function F itself is not well defined. Of course to do so, we
must not take V = M but take V to be of the subspace consisting of functions
of compact support.

A linear function on V is just a density, but in Euclidean space, with Eu-
clidean volume density dxdydz we may identify densities with functions. Sup-
pose that ρ is a smooth function, and we let `ρ be the corresponding element of
V∗,

`ρ(s) =
∫
R3
sρdxdydz.

Equation (8.16) with ` = `ρ becomes∫
R3

(φxsx + φysy + φzsz)dxdydz =
∫
R3
sρdxdydz ∀s ∈ V,

which is to be regarded as an equation for φ where ρ is given. We have

φxsx + φysy + φzsz = (φxs)x + (φys)y + (φzs)z − s∆φ

where ∆ is the Euclidean Laplacian,

∆φ = φxx + φyy + φzz.

Thus, since the total derivatives (sφx)x etc. contribute zero to the integral,
equation (8.16) is the Poisson equation

∆φ = ρ.

As we know, a solution to this equation is given by convolution with the 1/r
potential:

φ(x, y, z) =
1
4π

∫
ρ(ξ, η, ζ)√

(x− ξ)2 + (y − η)2 + (z − ζ)2
dξdηdζ

if ρ has compact support, for example, so that this integral converges. In this
sense Euclidean geometry determines the 1/r potential.
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8.3.2 The passive equations.

Symmetries of the function F may lead to constraints on the right hand side of
(8.16). In our example of a function of two variables, suppose that the function
f on the plane is invariant under rotations. Thus f would have to be a function
of the radius, r, and hence the right hand side of (8.16) would have to be
proportional to dr, and in particular, vanish on vectors tangent to the circle

through the point
(
x
y

)
.

More generally, suppose that G is group acting on M, and that the function
F is invariant under the action of this group, i.e.

F (a · x) = F (x) ∀a ∈ G.

Let O = G · x denote the orbit through x, so G · x consists of all points of the
form ax, a ∈ G. Then the function F is constant on O and so dFx must vanish
when evaluated on the tangent space to O. We may write this symbolically as

` ∈ (TO)0x (8.17)

if (8.16) holds. Of course, in the infinite dimensional situations where we want
to apply this equation, we must use some imagination to understand what is
meant by the tangent space to the orbit.

We want to consider what happens when we modify ` by adding to it a
“small” element, µ ∈ V∗. Presumably the solution x to our “source equation”
(8.16) would then be modified by a small amount and so the tangent space to
the orbit would change. We would then have to apply (8.17) to ` + µ using
the modified tangent space. [One situation where disregarding this change in
x could be justified is when ` = 0. Presumably the modification of x will be
of first order in µ, and hence the change in (8.17) will be a second order effect
which can be ignored if µ is small.]

A passive equation of physics is where we apply (8.17) but disregard the
change in the tangent space and so obtain the equation

µ ∈ (TM)0x. (8.18)

The justification for ignoring the non-linear effect of µ of x may be problematical
from our abstract point of view, but the equation we have just obtained for the
passive reaction of µ to the presence of x is a powerful principle of physics.
About half the laws of physics are of this form

We have enunciated two principles of physics, a source equation (8.16) which
amounts to inverting a Legendre transformation, and the passive equation (8.18)
which is a consequence of symmetry. We now turn to how Hilbert and Einstein
implemented these principles for gravity.
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8.4 The Hilbert “function”.

The space M is the space of Lorentzian metrics on a given manifold, M . Hilbert
chooses as his function

F (G) = −
∫

M

Sg, S = ĝ · Ric(g).

As discussed above, this “function” need not be defined since the integral in
question need not converge. But the differential

dFg[S]

will be defined when evaluated on a variation of compact support. The integral
defining F involves g at three locations: in the definition of the density g, in
the dual metric ĝ and in Ric. Thus, by Leibniz’s rule

−dFg[S] =
∫

M

ĝ · Ric(g)dg[S] +
∫

M

dĝ[S] · Ric(g) +
∫

M

ĝ · dRicg[S].

We have already done the hard work involved in showing that the third
integral vanishes, equation (8.15). So we are left with the first two terms.

As to the first term, the coordinate free way of rewriting (8.10) is

dgg[S] =
1
2
ĝ · Sg.

As to the second term, recall that in local coordinates, ĝ is given by
∑
gij∂i∂j

where (gij) is the inverse matrix of gij . So we recall a formula we derived for
the differential of the inverse function of a matrix. If inv denotes the inverse
function, so

inv(B) = B−1,

then it follows from differentiating the identity

BB−1 ≡ I

using Leibniz’s rule that

d invB [C] = −B−1CB−1.

It follows that the differential of the function g 7→ ĝ when evaluated at S
is S ↑↑, the contravariant symmetric tensor obtained from S by applying the
raising operator (coming from g) twice. Now

(S ↑↑) · Ric = S · Ric ↑↑ .

So if we define
RIC := Ric ↑↑
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to be the contravariant form of the Ricci tensor we obtain

dFg[S] =
∫

M

(RIC− 1
2
Sĝ) · Sg. (8.19)

This is left hand side of the source equation (8.16). The right hand side is a
linear function on the space T (M)compact. We know that if T is a smooth
symmetric tensor field, then it defines a linear function on T (M)compact given
by

`T(S) =
∫

M

S ·Tg.

Thus for ` = `T equation (8.16) becomes the celebrated Einstein field equations

RIC− 1
2
Sĝ = T (8.20)

So if we regard the physical objects as semiRiemann metrics, and if we believe
that matter determines the metric, by a source type equation, then matter
should be considered as a linear function on T (M)compact. In particular a
“smooth” matter distribution is a contravariant symmetric tensor field. If we
believe that the laws of physics are described by the function given by Hilbert,
we get the Einstein field equations. Modifying the function would change the
source equations. For example, if we replace S by S + c where c is a constant,
this would have the effect of adding a term 1

2cĝ to the left hand side of the field
equations. This is the notorious “cosmological constant” term.

We will take our group of symmetries to be the group of diffeomorphisms of
M of compact support - diffeomorphisms which are the identity outside some
compact set. Such transformations preserve the function F .

If V is a vector field of compact support which generates a one parameter
group, φs of transformations, then these transformations have compact sup-
port, and the fact that the function F is invariant under these transformations
translates into the assertion that dFg[LV g] = 0.

In other words, the “tangent space to the orbit through g” is the subspace
of T (M)compact consisting of all LV g where V is a vector field of compact sup-
port. From the results obtained above we now know that the passive equation
translates into

divT = 0

for a smooth tensor field and into

T = ±γ′ ⊗ γ′, γ a geodesic

for a continuous tensor field concentrated along a curve. These results are
independent of the choice of F .
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8.5 Schrodinger’s equation as a passive equa-
tion.

In quantum mechanics, the background is a complex Hilbert space. In order to
avoid technicalities, let us assume that H is a finite dimensional complex vector
space with an Hermitian scalar product. Let M denote space of all self adjoint
operators on H. Let G be the group of all unitary operators, and let G act on
M by conjugation: U ∈ G acts on M by sending

A 7→ UAU−1.

Since M is a vector space, its tangent bundle is automatically trivialized. We
may also identify the space of linear functions on M with M by assigning to
B ∈M the linear function `B defined by

`B(A) = trAB.

If C is a self adjoint matrix, the tangent to the curve

exp(itC)A exp(−itC)

at t = 0 is i[C,A]. So the “tangent space to the orbit through A” consists of all
i[C,A]

Show that the passive equation (8.18) becomes

[A,B] = 0

for µ = `B . A linear function is called a pure state if it is of the form `B where
B is projection onto a one dimensional subspace. This means that there is a
unit vector φ ∈ H (determined up to phase) so that

Bu = (u, φ)φ ∀u ∈ H

where ( , ) denotes the scalar product on H.
Show that a pure state satisfies (8.18) if and only if φ is an eigenvector of

H:
Hφ = λφ

for some real number λ. This is the (time independent) Schrodinger equation.

8.6 Harmonic maps.

Let us return to equation (8.18) in the setting of the group of diffeomorphisms
of compact support of a manifold M acting on the semi-Riemannian metrics. In
the case that we our linear function µ was given by a “delta function tensor field
supported along a curve” we saw that condition (8.18) implies that the curve γ
is a geodesic and the tensor field is ±γ′⊗ γ′ (under suitable reprametrization of
the curve and assuming that the tensor field does not vanish anywhere on the
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curve). We now examine what condition (8.18) says for a “delta function tensor
field” on a more general submanifold. So we are interested in the condition

µ(S(∇V ↓) = 0

for all V of compact support where µ is provided by the following data:

1. A k dimensional manifold Q and a proper map f : Q→M ,

2. A smooth section t of f ]S2(TM), so t assigns to each q ∈ Q an element
t(q) ∈ S2TMf(q), and

3. A density ω on Q.

For any section s of S2T ∗M and any q ∈ Q we can form the “double contraction”
s(q) • t(q) since s(q) and t(q) take values in dual vector spaces, and since f s
proper, if s has compact support then so does the function q 7→ s(q) • t(q) on
Q. We can then form the integral

µ[s] :=
∫

Q

s(·) • t(·)ω. (8.21)

We observe (and this will be important in what follows) that µ depends on the
tensor product t ⊗ ω as a section of f ]S2TM ⊗ D where D denotes the line
bundle of densities of Q rather than on the individual factors.

We apply the equation µ(S(∇V ↓) = 0 to this µ and to v = φW where φ is
a function of compact support and W a vector field of compact support on M .
Since

∇(φW ) = dφ⊗W + φ∇W

and t is symmetric, this becomes∫
Q

t • (dφ⊗W ↓ +φ∇W ↓)ω = 0. (8.22)

We first apply this to a φ which vanishes on f(Q), so that the term φ∇W
vanishes when restricted to Q. We conclude that the “single contraction” t · θ
must be tangent to f(Q) at all points for all linear differential forms θ and hence
that

t = df∗h

for some section h of S2(TQ).
Again, let us apply condition (8.22), but no longer assume that φ vanishes

on f(Q). For any vector field Z on Q let us, by abuse of language, write

Zφ for Zf∗φ,

for any function φ on M , write

〈Z,W 〉 for 〈df∗Z,W 〉M
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where W is a vector field on M , and

∇ZW for ∇df∗ZW.

Write
h =

∑
hijeiej

in terms of a local frame field e1, . . . , ek on Q. Then

t • (∇V ↓) =
∑

hij [ei(φ)〈ej ,W 〉+ φ〈∇ei
W, ej〉] .

Now
〈∇ei

W, ej〉 = ei〈W, ej〉 − 〈W,∇ei
ej〉

so
t • ∇V ↓=

∑
ij

[
hijei(φ〈ej ,W 〉)− φ〈W,hij∇ei

ej〉
]
.

Also, ∫
Q

∑
hijei (φ〈ej ,W 〉)ω = −

∫
Q

φ〈ej ,W 〉LP
i hijei

ω.

Let us write
zj = divω(

∑
hijei)

so
LP

i hijei
ω = wjω.

If we set
Z :=

∑
zjej

then condition (8.22) becomes∑
ij

hijM∇ei
ej = −Z, (8.23)

where we have used M∇ to emphasize that we are using the covariant derivative
with respect to the Levi-Civita connection on M , i.e.

M∇ei
ej := ∇df∗ei

(df∗ej).

To understand (8.23) suppose that we assume that h is non-degenerate, and
so induces a semi-Riemannian metric ȟ on Q, and let us assume that ω is the
volume form associated with ȟ. (In all dimensions except k = 2 this second
assumption is harmless, since we can rescale h to arrange it to be true.) Let
h∇ denote covariant differential with respect to ȟ. Let us choose the frame field
e1, . . . , ek to be “orthonormal” with respect to ȟ, i.e.

hij = εjδij , where εj = ±1

so that ∑
i

hijei = εje− j.
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Then
Lejω = C(h∇ej)ω

and
C(h∇ej) =

∑
i

εi〈h∇eiej , ei〉ȟ = −
∑

i

〈ej , ε
h
i ∇eiei〉ȟ,

so

Z = −
∑

j

∑
i

εj〈ej , εi
h∇eiei〉ȟej = −

∑
i

εi
h∇eiei = −

∑
ij

h∇eiej .

Given a metric ȟ on Q, a metric g on M , the second fundamental form
of a map f : Q→M , is defined as

Bf (X,Y ) := g∇df(X)(df(Y ))− df(h∇XY ). (8.24)

Here X and Y are vector fields on Q and df(X) denotes the “vector field alongf”
which assigns to each q ∈ Q the vector dfq(Xq) ∈ TMf(q).

The tension field τ(f) of the map f (relative to a given g and ȟ) is the
trace of the second fundamental form so

τ(f) =
∑
ij

hijg∇df(ei)(df(ej))− df(h∇ei
ej)

in terms of local frame field.
A map f such that τ(f) ≡ 0 is called harmonic. We thus see that under

the above assumptions about h and ω

Theorem 2 Condition (8.22) says that f is harmonic relative to g and ȟ.

Suppose that we make the further assumption that ȟ is the metric induced
from g by the map f . Then

df(h∇XY ) = (g∇df(X)df(Y ))tan,

the tangential component of g∇df(X)df(Y ) and hence

Bf (X,Y ) = (g∇df(X)df(Y ))nor,

the normal component of g∇df(X)df(Y ). This is just the classical second funda-
mental form vector of Q regarded as an immersed submanifold of M . Taking its
trace gives kH where H is the mean curvature vector of the immersion. Thus if
in addition to the above assumptions we make the assumption that the metric
ȟ is induced by the map f , then we conclude that (8.18) says that H = 0, i.e.
that the immersion f must be a minimal immersion.



Chapter 9

Submersions.

The treatment here is that of a 1966 paper by O’Neill (Michigan Journal of
Math.) following earlier basic work by Hermann. In a sense, the subject can
be regarded as the appropriate generalization of the notion of a “surface of
revolution”

9.1 Submersions.

Let M and B be differentiable manifolds, and π : M → B be a submersion,
which means that dπm : TMm → TBπ(m) is surjective for all m ∈ M . The
implicit function theorem then guarantees that π−1(b) is a submanifold of M
for all b ∈ B. These submanifolds are called the fibers of the submersion. By
the implicit function theorem, the tangent space to the fiber through m ∈ M
just the kernel of the differential of the projection, π. Call this space V (M)m.
So

V (M)m := ker dπm.

The set of such tangent vectors at m is called the set of vertical vectors, and
a vector field on M whose values at every point are vertical will be called a
vertical vector field. We will denote the set of vertical vector fields by V(M).

If φ is a smooth function on B, and V is a vertical vector field, then V π∗φ =
0. Conversely, if V π∗φ = 0 for all smooth functions, φ on B, then V is vertical.
In particular, if U and V are vertical vector fields, then so is [U, V ].

Now suppose that both M and B are (semi-)Riemann manifolds. Let

H(M)m := V (M)⊥m.

We assume the following:

dπm : H(M)m → TBπ(m)

is an isometric isomorphism, i.e. is bijective and preserves the scalar product of
tangent vectors. Notice that this implies that V (M)m ∩H(M)m = {0} so that

179
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the restriction of the scalar product to V (M)m is non-singular. (Of course in
the Riemannian case this is automatic.)

We let H : T (M)m → H(M)m denote the orthogonal projection at each
point and also letH(M) denote the set of “horizontal” vector fields (vector fields
which belong to H(M)m at each point). Similarly, we let V denote orthogonal
projection onto V (M)m at each point. So if E is a vector field on M , then VE
is a vertical vector field and HE is a horizontal vector field. We will reserve the
letters U, V,W for vertical vector fields, and X,Y, Z for horizontal vector fields.

Among the horizontal vector fields, there is a subclass, the basic vector fields.
They are defined as follows: Let XB be a vector field on B. If m ∈ M , there
is a unique tangent vector, call it X(m) ∈ H(M)m such that dπmX(m) =
XB(π(m)). This defines the the basic vector field, X, corresponding to XB .
Notice that if X is the basic vector field corresponding to XB , and if φ is a
smooth function on B, then

Xπ∗φ = π∗(XBφ).

Also, by definition,
〈X,Y 〉M = π∗〈XB , YB〉B

for basic vector fields X and Y . In general, if X and Y are horizontal, or even
basic vector fields, their Lie bracket, [X,Y ] need not be horizontal. But if X
and Y are basic, then we can compute the horizontal component of [X,Y ] as
follows: If φ is any function on B and if X and Y are basic vector fields, then

(H[X,Y ])π∗φ = [X,Y ]π∗φ
= XY π∗φ− Y Xπ∗φ

= π∗(XBYBφ− YBXBφ)
= π∗([XB , YB ]φ)

so H[X,Y ] is the basic vector field corresponding to [XB , YB ].
We claim that

H(∇XY ) is the basic vector field corresponding to ∇B
XB

(YB) (9.1)

where ∇B denotes the Levi-Civita covariant derivative on B and ∇ denotes the
covariant derivative on M . Indeed, let XB , YB , ZB be vector fields on B and
X,Y, Z the corresponding basic vector fields on M . Then

X〈Y,Z〉M = X (π∗〈XB , YB〉B) = π∗(XB〈YB , ZB〉B)

while
〈X, [Y,Z]〉 = 〈X,H[Y, Z]〉 = π∗ (〈XB , [YB , ZB ]〉B)

since H[Y,Z] is the basic vector field corresponding to [YB , ZB ]. From the
Koszul formula it then follows that

〈∇XY, Z〉M = π∗〈∇B
XB
YB , ZB〉B .
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Therefore dπm(∇XY (m)) = ∇B
XB
YB(π(m)) for all points m which implies (9.1).

Suppose that γ is a horizontal geodesic, so that πγ is a regular curve, so
an integral curve of a vector field XB on B. Let X be the corresponding basic
vector field, so γ is an integral curve of X. The fact that γ is a geodesic implies
that ∇XX = 0 along γ, and hence by (9.1) ∇XB

XB = 0 along πγ so πγ is a
geodesic. We have proved

π(γ) is a geodesic if γ is a horizontal geodesic. (9.2)

If V and W are vertical vector fields, then we may consider their restriction
to each fiber as a vector field along that fiber, and may also consider the Levi-
Civita connection on the fiber considered as a semi-Riemann manifold in its own
right. We will denote the covariant derivative of W with respect to V relative
to the connection induced by the metric on each fiber by ∇V

V W . It follows from
the Koszul formula, and the fact that [V,W ] is vertical if V and W are that

∇V
V W = V(∇V W ) (9.3)

for vertical vector fields. Here ∇ is the Levi-Civita covariant derivative on M ,
so that ∇V W has both a horizontal and a vertical component.

9.2 The fundamental tensors of a submersion.

9.2.1 The tensor T .

For arbitrary vector fields E and F on M define

TEF := H[∇VE(VF )] + V[∇VE(HF )],

where, in this equation, ∇ denotes the Levi-Civita covariant derivative deter-
mined by the metric on M .

If f is any differentiable function on M , then VfF = fVF and ∇VE(fVF ) =
[(VE)f ]VF + f∇VE(VF ) so

H[∇VE(V(fF ))] = fH[∇VE(VF )].

Similarly f pulls out of the second term in the definition of T . Also V(fE) =
fVE and ∇fVE = f∇VE by a defining property of ∇.

This proves that T is a tensor of type (1, 2): TfEF = TE(fF ) = fTEF .
By definition, TE = TVE depends only on the vertical component, VE of E.

If U and V are vertical vector fields, then

TUV = H∇UV

= H∇V U +H([U, V ])
= H∇V U

since [U, V ] is vertical. Thus
TUV = TV U (9.4)
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for vertical vector fields. Also notice that if U is a vertical vector field then TEU
is horizontal, while if X is a horizontal vector field, then TEX is vertical.

1. Show that
〈TEF1, F2〉 = −〈F1, TEF2〉 (9.5)

for any pair of vector fields F1, F2.

9.2.2 The tensor A.

This is defined by interchanging the role of horizontal and vertical in T , so

AEF := V∇HE(HF ) +H∇HE(VF ).

The same proof as above shows that A is a tensor, that AE sends horizontal
vector fields into vertical vector fields and vice versa, and the your solution of
problem 1 will also show that

〈AEF1, F2〉 = −〈F1, AEF2〉

for any pair of vector fields F1, F2.
Notice that the any horizontal vector field can be written (locally) as a

function combination of basic vector fields, and if V is vertical and X basic,
then

[V,X]π∗φ = V π∗(XBφ)−XV π∗φ = 0,

so the Lie bracket of a vertical vector field and a basic vector field is vertical.

2. Show that AXX = 0 for any horizontal vector field, X, and hence that

AXY = −AY X (9.6)

for any pair of horizontal vector fields X,Y . Since

V[X,Y ] = V(∇XY −∇Y X) = AXY −AY X

it then follows that

AXY =
1
2
V[X,Y ]. (9.7)

(Hint, it suffices to show that AXX = 0 for basic vector fields, and for this, that
〈V,AXX〉 = 0 for all vertical vector fields since AXX is vertical. Use Koszul’s
formula.)

We can express the relations between covariant derivatives of horizontal and
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vertical vector fields and the tensors T and A:

∇V W = TV W +∇V
V W (9.8)

∇V X = H∇V X + TV X (9.9)
∇XV = AXV + V∇XV (9.10)
∇XY = H∇XY +AXY (9.11)

If X is a basic vector field, then ∇V X = ∇XV + [V,X] and [V,X] is vertical.
Hence

H∇V X = AXV if X is basic. (9.12)

9.2.3 Covariant derivatives of T and A.

The definition of covariant derivative of a tensor field gives

(∇E1A)E2E3 = ∇E1(AE2E3)−A∇E1E2E3 −AE2(∇E1E3)

for any three vector fields E1, E2, E3. Suppose, in this equation, we take E1 = V
and E2 = W to be vertical, and E3 = E to be a general vector field. Then
AE2 = AW = 0 so the first and third terms on the right vanish. In the middle
term we have

A∇V W = AH∇V W = ATV W

so that we get
(∇V A)W = −ATV W . (9.13)

If we take E1 = X to be horizontal and E2 = W to be vertical, again only the
middle term survives and we get

(∇XA)W = −AAXW . (9.14)

Similarly,

(∇XT )Y = −TAXY (9.15)
(∇V T )Y = −TTV Y . (9.16)

3. Show that

〈(∇UA)XV,W 〉 = 〈TUV,AXW 〉 − 〈TUW,AXV 〉 (9.17)
〈(∇EA)XY, V 〉 = −〈(∇EA)Y X,V 〉 (9.18)
〈(∇ET )V W,X〉 = 〈(∇ET )WV,X〉 (9.19)

where U, V,W are vertical, X,Y are horizontal and E is a general vector field.

We also claim that

S〈(∇ZA)XY, V 〉 = S〈AXY, TV Z〉 (9.20)
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where V is vertical, X,Y, Z horizontal and S denotes cyclic sum over the hori-
zontal vectors.

Proof. This is a tensor equation, so we may assume that X,Y, Z are basic
and that the corresponding vector fields XB , YB , ZB have all their Lie brackets
vanish at b = π(m) where m is the point at which we want to check the equation.
Thus all Lie brackets of X,Y, Z are vertical at m. We have 1

2 [X,Y ] = AXY by
(9.7), so

1
2
[[X,Y ], Z] = [AXY,Z] = ∇AXY (Z)−∇Z(AXY )

and the cyclic sum of the leftmost side vanishes by the Jacobi identity. So

S[∇AXY (Z)] = S[∇Z(AXY )]. (9.21)

Taking scalar product with the vertical vector V (m), we have (at the point m)
by repeated use of (9.4) and (9.5)

〈∇AXY (Z), V 〉 = 〈TAXY (Z), V 〉
= −〈Z, TAXY (V )〉
= −〈Z, TV (AXY )〉
= 〈TV Z,AXY 〉

We record this fact for later use as

〈TAXY (Z), V 〉 = 〈TV Z,AXY 〉. (9.22)

Using (9.21) we obtain

S〈∇Z(AXY ), V 〉 = S〈TV Z,AXY 〉. (9.23)

Now

〈∇Z(AXY ), V 〉 − 〈(∇ZA)XY, V 〉 = 〈A∇ZX(Y ), V 〉+ 〈AX(∇ZY ), V 〉

while
A∇ZX(Y ) = −AY (H∇ZX) = −AY (H∇XZ)

using (9.6) for the first equations and the fact that [X,Z] is vertical for the
second equation. Taking scalar product with V gives

−〈AY (H∇XZ), V 〉 = −〈AY (∇XZ), V 〉

since AY U is horizontal for any vertical vector, and hence

〈AY (V∇XZ), V 〉 = 0.

We thus obtain

〈∇Z(AXY ), V 〉 − 〈(∇ZA)XY, V 〉 = 〈AX(∇ZY ), V 〉 − 〈AY (∇XZ), V 〉.

The cyclic sum of the right hand side vanishes. So, taking cyclic sum and
applying (9.23) establishes (9.20).
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9.2.4 The fundamental tensors for a warped product.

A very special case of a semi-Riemann submersion is that of a “warped product”
following O’Neill’s terminology. Here M = B × F as a manifold, so π is just
projection onto the first factor. We are given a positive function, f on B and
metrics 〈 , 〉B and 〈 , 〉F on each factor. At each point m = (b, q), b ∈ B, q ∈ F
we have the direct sum decomposition

TMm = TBb ⊕ TFq

as vector spaces, and the warped product metric is defined as the direct sum

〈 , 〉 = 〈 , 〉B ⊕ f2〈 , 〉F .

O’Neill writes M = B ×f F for the warped product, the metrics on B and F
being understood. The notion of warped product can itself be considered as a
generalization of a surface of revolution, where B is a plane curve not meeting
the axis of revolution, where f is the distance to the axis, and where F = S1,
the unit circle with its standard metric.

On a warped product, the basic vector fields are just the vector fields of B
considered as vector fields of B×F in the obvious way, having no F component.
In particular, the Lie bracket of two basic vector fields, X and Y onM is just the
Lie bracket of the corresponding vector fields XB and YB on B, considered as
a vector field on M via the direct product. In particular, [X,Y ] has no vertical
component, so AXY = 0. In fact, we can be more precise. For each fixed q ∈ F ,
the projection π restricted to B × {q} is an isometry of B × {q} with B. Thus

∇XY = the basic vector field corresponding to ∇B
XB
YB .

On a warped product, there is a special class of vertical vector fields, those
that are vector fields on F considered as vector fields on B × F via the direct
product decomposition. Let us denote the collection of these vector fields by
L(F ), the “lifts” of vector fields on F to use O’Neill’s terminology. If V ∈ L(F )
and X is a basic vector field, then [X,V ] = 0 since they “depend on different
variables” and hence ∇XV = ∇V X. The vector field ∇XV is vertical, since
〈∇XV, Y 〉 = −〈V,∇XY 〉 = 0 for any basic vector field, Y , as ∇XY is horizontal.
This shows that AXV = 0 as well, so A = 0. We claim that once again we can
be more precise:

∇XV = ∇V X =
Xf

f
V ∀ basic X, and ∀V ∈ L(F ). (9.24)

Indeed, the only term that survives in the Koszul formula for 2〈∇XV,W 〉, W ∈
L(F ) is X〈V,W 〉. We have

〈V,W 〉 = f2〈VF ,WF 〉F

where we have written f instead of π∗f by the usual abuse of language for a
direct product. Now 〈VF ,WF 〉F is a function on F (pulled back to B × F ) and
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so is annihilated by X. Hence

X〈V,W 〉 = 2f(Xf)〈VF ,WF 〉F =
2Xf
f

〈V,W 〉,

proving (9.24). Notice that (9.24) gives us a piece of T , namely

TV X =
Xf

f
V.

We can also derive the “horizontal” piece of T , namely

TV W = −〈V,W 〉
f

grad f. (9.25)

Indeed

〈∇V W,X〉 = −〈W,∇V X〉

= −Xf
f
〈V,W 〉 and

Xf = 〈grad f,X〉.

In this formula, it doesn’t matter whether we consider f as a function on M
and compute its gradient there, or think of f as a function on B and compute
its gradient relative to B and then take the horizontal lift. The answer is
the same since f has no F dependence. Finally, the vertical component of
∇V W, V,W ∈ L(F ) is just the same as the extension to M of ∇F

VF
WF since

the metric on each fiber differs from that of F by a constant factor, which has
no influence on the covariant derivative.

9.3 Curvature.

We want equations relating the curvature of the base and the curvature of the
fibers to the curvature ofM and the tensors T , A, and their covariant derivatives.

So we will be considering expressions of the form

〈RE1E2E3, E4〉

where R is the curvature of M and the E′s are either horizontal or vertical. We
let n = 0, 1, 2, 3, or 4 denote the number of horizontal vectors, the remaining
being vertical. This gives five cases. So we will get five equations for curvature.
For example, n = 0 corresponds to all vectors vertical, so we are asking for
the relation between the curvature of the fiber and the full curvature. Let RV

denote the curvature tensor of the fiber (as a semi-Riemann submanifold).
The case n = 0 is the Gauss equation of each fiber:

〈RUV W,F 〉 =
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〈RV
UV W,F 〉 − 〈TUW,TV F 〉+ 〈TV W,TUF 〉, U, V,W, F ∈ V(M). (9.26)

We recall the proof (O’Neill 100). We may assume [U, V ] = 0 so

RUV = −∇U∇V +∇V∇U

and, using (9.3) and the definition of T , if we have

〈∇U∇V W,F 〉 = 〈V∇U∇V
V W,F 〉+ 〈∇U (TV W ), F 〉

= 〈∇V
U∇V

V W,F 〉+ U〈TV W,F 〉 − 〈TV W,∇UF 〉
= 〈∇V

U∇V
V W,F 〉 − 〈TV W,TUF 〉.

Substituting the above expression for RUV into 〈RUV W,F 〉 then proves (9.26).
The case n = 1 is the Codazzi equation for each fiber: Let U, V,W be

vertical vector fields and X a horizontal vector field. Then

〈RUV W,X〉 = 〈(∇V T )UW,X〉 − 〈(∇UT )V W,X〉 (9.27)

This is also in O’Neill, page 115. We recall the proof. We assume that
[U, V ] = 0 so RUV = −∇U∇V +∇V∇U as before. We have

〈∇U∇V W,X〉 = 〈∇U∇V
V W,X〉+ 〈∇U (TV W ), X〉

= 〈TU (∇V
V W ), X〉+ 〈∇U (TV W ), X〉.

We write
∇U (TV W ) = (∇UT )V W + T∇U V W + TV∇UW

and
〈TV∇UW,X〉 = 〈TV∇V

UW,X〉

so

〈∇U∇V W,X〉 = 〈(∇UT )V W,X〉+〈TU (∇V
V W ), X〉+〈TV (∇UW ), X〉+〈T∇U V W,X〉.

Interchanging U and V and subtracting, using ∇UV = ∇V U proves (9.27).
We now turn to the opposite extreme, n = 4 and n = 3 but first some

notation. We let RH denote the horizontal lift of the curvature tensor of B:
If hi ∈ H(M)m with vi := dπmhi define RH

h1h2
h3 to be the unique horizontal

vector such that
dπm

(
RH

h1h2
h3

)
= RB

v1v2
v3.

The case n = 4 is given by
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〈RXY Z,H〉 = 〈RH
XY Z,H〉 − 2〈AXY,AZH〉+ 〈AY Z,AXH〉+ 〈AZX,AY H〉

(9.28)

for any four horizontal vector fieldsX,Y, Z,H. As usual, we may assumeX,Y, Z
are basic and all their brackets are vertical. We will massage each term on the
right of

RXY Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ.

Since [X,Y ] is vertical, [X,Y ] = 2AXY . So

∇[X,Y ]Z = 2H∇AXY Z + 2TAXY (Z).

Since Z is basic we can apply (9.12) to the first term giving

∇[X,Y ]Z = 2AZ(AXY ) + 2TAXY (Z).

Let us write
∇Y Z = H∇Y Z +AY Z

and apply equation (9.1) which we write, by abuse of language as

H∇Y Z = ∇B
Y Z.

Then

∇X∇Y Z = ∇B
X∇B

Y Z +AX(∇B
Y Z) +AXAY Z + V∇X(AY Z).

Separating the horizontal and vertical components in the definition of R gives

HRXY Z = −[∇B
X ,∇B

Y ]Z + 2AZAXY −AXAY Z +AY AXZ (9.29)
VRXY Z = 2TAXY (Z)− V∇X(AY Z) +

+V∇Y (AXZ)−AX(∇B
Y Z) +AY (∇B

XZ) (9.30)

As we have chosen X,Y such that [XB , YB ] = 0, the first term on the right
of (9.29) is just RH

XY Z. Taking the scalar product of (9.29) with a horizontal
vector field (and using the fact that AE is skew adjoint relative to the metric
and AXZ = −AZX) proves (9.28).

If we take the scalar product of (9.30) with a vertical vector field, V we
get an expression for 〈RXY Z, V 〉 (and we can drop the projections V). Let us
examine what happens when we take the scalar product of the various terms on
the right of (9.30) with V . The first term gives

〈TAXY (Z), V 〉 = 〈TV Z,AXY 〉

by (9.22). The next two terms give

〈∇Y (AXZ), V 〉 − 〈∇X(AY Z), V 〉 = 〈(∇Y A)XZ, V 〉 − 〈(∇XA)Y Z, V 〉
+〈AX(∇Y Z), V 〉 − 〈AY (∇XZ), V 〉
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since ∇XY − ∇Y X = [X,Y ] is vertical by assumption. The last two terms
cancel the terms obtained by taking the scalar product of the last two terms in
(9.30) with V and we obtain

〈RXY Z, V 〉 = 2〈AXY, TV Z〉+ 〈(∇Y A)XZ, V 〉 − 〈(∇XA)Y Z, V 〉. (9.31)

We can simplify this a bit using (9.18) and (9.20). Indeed, by (9.18) we can
replace the second term on the right by −〈(∇XA)Y Z, V 〉 and then apply (9.20)
to get, for n = 3,

〈RXY Z, V 〉 = 〈(∇ZA)XY, V 〉+ 〈AXY, TZV 〉 − 〈AY Z, TV X〉 − 〈AZX,TV Y 〉.
(9.32)

Finally we give an expression for the case n = 2:

〈RXV Y,W 〉 = 〈(∇XT )V W,Y 〉+〈(∇V A)XY,W 〉−〈TV X,TWY 〉+〈AXV,AY W 〉.
(9.33)

To prove this, write

RXV = ∇∇XV −∇∇V X −∇X∇V +∇V∇X

and

〈∇∇XV Y,W 〉 = −〈Y, T∇XV W 〉+ 〈A∇XV Y,W 〉
−〈∇∇V XY,W 〉 = −〈T∇V XY,W 〉 − 〈A∇V XY,W 〉
−〈∇X∇V Y,W 〉 = −〈∇X(TV Y ),W 〉+ 〈∇V Y,AXW 〉
〈∇V∇XY,W 〉 = 〈∇V AXY,W 〉 − 〈∇XY, TV W 〉

where, for example, in the last equation we have written ∇XY = AXY +H∇XY
and

〈∇VH∇XY,W 〉 = −〈H∇XY,∇V W 〉 = 〈H∇XY, TV W 〉 = 〈∇XY, TV W 〉.

We have

〈(∇XT )V W,Y 〉 = −〈W, (∇XT )V Y 〉
= −〈W,∇X(TV Y )〉+ 〈W,T∇XV Y 〉+ 〈W,TV∇XY 〉

〈(∇V A)XY,W 〉 = 〈∇V (AXY ),W 〉 − 〈A∇V XY,W 〉 − 〈AX∇V Y,W 〉.
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The six terms on the right of the last two equations equal six of the eight terms
on the right of the preceding four leaving two remaining terms,

〈A∇XV Y,W 〉 − 〈T∇V XY,W 〉.

But

〈A∇XV Y,W 〉 = −〈AYH∇XV,W 〉
= −〈AY AXV,W 〉
= 〈AXV,AY W 〉

and a similar argument deals with the second term.
We repeat our equations. In terms of increasing values on n we have

〈RUV W,F 〉 = 〈RV
UV W,F 〉 − 〈TUW,TV F 〉+ 〈TV W,TUF 〉,

〈RUV W,X〉 = 〈(∇V T )UW,X〉 − 〈(∇UT )V W,X〉
〈RXV Y,W 〉 = 〈(∇XT )V W,Y 〉+ 〈(∇V A)X ,W 〉 − 〈TV X,TWY 〉+ 〈AXV,AY W 〉,
〈RXY Z, V 〉 = 〈(∇ZA)XY, V 〉+ 〈AXY, TZV 〉 − 〈AY Z, TV X〉 − 〈AZX,TV Y 〉,
〈RXY Z,H〉 = 〈RH

XY Z,H〉 − 2〈AXY,AZH〉+ 〈AY Z,AXH〉+ 〈AZX,AY H〉.

We have stated the formula for n = 2, i.e. two vertical and two horizontal
fields for the case 〈RXV Y,W 〉, i.e. where one horizontal and one vertical vector
occur in the subscript RE1E2 . But it is easy to check that all other arrangements
of two horizontal and two vertical fields can be reduced to this one by curvature
identities. Similarly for n = 1 and n = 3.

9.3.1 Curvature for warped products.

The curvature formulas simplify considerably in the case of a warped product
where A = 0 and

TV X =
Xf

f
V, TV W = −〈V,W 〉

f
gradf.

We will give the formulas where X,Y, Z,H are basic and U, V,W,F ∈ L(F ). We
have V f = 0 and 〈∇V grad f,X〉 = V Xf − 〈grad f,∇V X〉 = 0. We conclude
that the right hand side of (9.27) vanishes, so RUV W is vertical and we conclude
from (9.26) that

RUV W = RF
UV W − 〈grad f, grad f〉

f2
(〈U,W 〉V − 〈V,W 〉U) (9.34)

The Hessian of a function f on a semi-Riemann manifold is defined to be
the bilinear form on the tangent space at each point defined by

Hf (X,Y ) = 〈∇Xgrad f, Y 〉.
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In fact, we have

〈∇Xgrad f, Y 〉 = XY f − 〈grad f,∇XY 〉
= ∇X(df(Y ))− df(∇XY )
= [∇∇f ](X,Y )

which gives an alternative definition of the Hessian as

Hf = ∇∇f

and shows that it is indeed a (0,2) type tensor field. Also

Hf (X,Y ) = XY f − (∇XY )f
= [X,Y ]f + Y Xf − [∇XY −∇Y X +∇Y X]f
= Y XF − (∇Y X)f
= Hf (Y,X)

showing that Hf is a symmetric tensor field.
We have

∇XV =
Xf

f
V = TV X, TV W = −〈V,W 〉

f
grad f,

if X is basic and V,W ∈ L(F ). So

(∇XT )V W = ∇X(TV W )− T∇XV − TV (∇XW )

= −〈V,W 〉
(
Xf

f2
grad f +

1
f
∇Xgrad f

)
+ 2〈V,W 〉Xf

f2

and 〈grad f, Y 〉 = Y f . Therefore the case n = 2 above yields

〈RXV Y,W 〉 = −H
f (X,Y )
f

〈V,W 〉. (9.35)

The case n = 3 gives
〈RXY Z, V 〉 = 0

and hence by a symmetry property of the curvature tensor, 〈RXY Z, V 〉 =
〈RZV X,Y 〉 = 0, or, changing notation,

〈RXV Y,Z〉 = 0.

Thus

RV XY =
Hf (X,Y )

f
V. (9.36)

We have 〈RUV X,W 〉 = −〈RUV X,W 〉 = 0 and by (9.36) and the first Bianchi
identity 〈RUV X,Y 〉 = (Hf (X,Y )/f)× (〈U, V 〉 − 〈V,U〉) = 0 so

RUV X = 0. (9.37)
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If we use this fact, the symmetry of the curvature tensor and (9.35) we see that

RXV W =
〈V,W 〉
f

∇Xgrad f. (9.38)

It follows from the case n = 3 and n = 4 that

RXY Z = RH
XY Z, (9.39)

the basic vector field corresponding to the vector fieldRB
XBYB

ZB . Hence 〈RXY V,Z〉 =
0. We also have 〈RXY V,W 〉 = 〈RV WX,Y 〉 = 0 so

RXY V = 0. (9.40)

Ricci curvature of a warped product.

Recall that the Ricci curvature, Ric (X,Y ) defined as the trace of the map
V 7→ RXV Y is given in terms of an “orthonormal” frame field E1, . . . , En by

Ric (X,Y ) =
∑

εi〈RXEiY,Ei〉, εi = 〈Ei, Ei〉.

We will apply this to a frame field whose first dim B vectors lie in Vect B and
whose last d = dim F vectors lie in Vect F . We will assume that d > 1 and
that X,Y ∈ Vect B and U, V ∈ Vect F . We get

Ric (X,Y ) = Ric B(X,Y )− d

f
Hess B(f)(X,Y ) (9.41)

Ric (X,V ) = 0 (9.42)
Ric (V,W ) = Ric F (V,W )− 〈V,W 〉f# where (9.43)

f# :=
∆f
f

+ (d− 1)
〈grad f, grad f〉

f2
(9.44)

where ∆f is the Laplacian of f which is the same as the contraction of the
Hessian of f .

Geodesics for a warped product

We now compute the equations for a geodesic on B×fF . Let γ(s) = (α(s), β(s))
be a curve on B ×f F and suppose temporarily the neither α′(s) = 0 nor
β′(s) = 0 in an interval we are studying. So we can embed the tangent vectors
along both projected curves in vector fields, X on B and V on F , so that γ is a
solution curve to X + V on B×f F . The condition that γ be a geodesic is then
that ∇X+V (X + V ) = 0 along γ. But

∇X+V (X + V ) = ∇XX +∇XV +∇V X +∇V V

= ∇B
XX + 2

Xf

f
V − 〈V, V 〉

f
grad f +∇F

V V.
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Separating the vertical and horizontal components, and using the fact that
∇B

XX = α′′ along α and β′ = V, ∇F
V V = β′′ along β shows that the geodesic

equations take the form

α′′ = 〈β′, β′〉F (f ◦ α)grad f on B (9.45)

β′′ = − 2
f ◦ α

d(f ◦ α)
ds

β′ on F (9.46)

A limiting argument [O-208] shows that these equations hold for all geodesics.

We repeat all the important equations of this subsection:

∇XY = ∇B
XY

∇XV = Xf
f V = ∇V X

H∇V W = TUV
= − 1

f 〈V,W 〉grad f

vert ∇V W
= ∇F

V W

geodesic eqns
α′′ = 〈β′, β′〉F (f ◦ α)grad f on B
β′′ = − 2

f◦α
d(f◦α)

ds β′ on F

curvature
RXY Z = RH

XY Z

RV XY = Hess B
(f)(X,Y )
f V

RXV W = 〈V,W 〉
f ∇Xgrad f

RUV W = RF
UV W − 〈grad f,grad f〉

f2 (〈U,W 〉V − 〈V,W 〉U)

Ricci curv
Ric (X,Y ) = Ric B(X,Y )− d

f Hess B(f)(X,Y ))
Ric (X,V ) = 0
Ric (V,W ) = Ric F (V,W )− 〈V,W 〉f# where

f# := ∆f
f + (d− 1) 〈grad f,grad f〉

f2 .

9.3.2 Sectional curvature.

We return to the general case of a submersion, and recall that the sectional
curvature of the plane, Pab ⊂ TMm, spanned by two independent vectors, a, b ∈
TMm is defined as

K(Pab) :=
〈Raba, b〉

〈a, a〉〈b, b〉 − 〈a, b〉2
.
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We can write the denominator more simply as ||a ∧ b||2.
In the following formulas, all pairs of vectors are assumed to be independent,

with u, v vertical and x, y horizontal, and where xB denotes dπm(x) and yB :=
dπm(y). Substituting into our formulas for the curvature gives

K(Pvw) = KV(Pvw)− 〈Tvv, Tww〉 − ||Tvw||2

||v ∧ w||2
(9.47)

K(Pxv) =
〈(∇xT )vv, x〉+ ||Axv||2 − ||Tvx||2

||x||2||v||2
(9.48)

K(Pxy) = KB(PxByB
)− 3||Axy||2

||x ∧ y||2
. (9.49)

9.4 Reductive homogeneous spaces.

9.4.1 Bi-invariant metrics on a Lie group.

Let G be a Lie group with Lie algebra, g, which we identify with the left in-
variant vector fields on G. Any non-degenerate scalar product, 〈 , 〉, on g thus
determines (and is equivalent to) a left invariant semi-Riemann metric on G.
We let Aa denote conjugation by the element a ∈ G, so

Aa : G→ G,Aa(b) = aba−1.

We have Aa(e) = e and

d(Aa) = Ada : TGe → TGe.

Since Aa = La ◦ Ra−1 , the left invariant metric, 〈 , 〉 is right invariant if and
only if it is Aa invariant for all a ∈ G, which is the same as saying that 〈 , 〉 is
invariant under the adjoint representation of G on g, i.e. that

〈AdaY,AdaZ〉 = 〈Y, Z〉, ∀Y,Z ∈ g, a ∈ G.

Setting a = exp tX, X ∈ g, differentiating with respect to t and setting t = 0
gives

〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 = 0, ∀X,Y, Z ∈ g. (9.50)

If G is connected, this condition implies that 〈 , 〉 is invariant under Ad and
hence is invariant under tight and left multiplication. Such a metric is called
bi- invariant.

Let inv denote the map sending every element into its inverse:

inv : a 7→ a−1, a ∈ G.

Since inv exp tX = exp(−tX) we see that

d inve = −id .
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Also
inv = Ra−1 ◦ inv ◦ La−1

since the right hand side sends b ∈ G into

b 7→ a−1b 7→ b−1a 7→ b−1.

Hence d inva : TGa → TGa−1 is given, by the chain rule, as

dRa−1 ◦ dinv e ◦ dLa−1 = −dRa−1 ◦ dLa−1

implying that a bi-invariant metric is invariant under the map inv. Conversely,
if a left invariant metric is invariant under inv then it is also right invariant,
hence bi-invariant since

Ra = inv ◦ L−1
a ◦ inv .

The Koszul formula simplifies considerably when applied to left invariant
vector fields and bi-invariant metrics since all scalar products are constant, so
their derivatives vanish, and we are left with

2〈∇XY, Z〉 = −〈X, [Y,Z]〉 − 〈Y, [X,Z]〉+ 〈Z, [X,Y ]〉

and the first two terms cancel by (9.50). We are left with

∇XY =
1
2
[X,Y ]. (9.51)

Conversely, if 〈 , 〉 is a left invariant bracket for which (9.51) holds, then

〈X, [Y,Z]〉 = 2〈X,∇Y Z〉
= −2〈∇Y X,Z〉
= −〈[Y,X], Z〉
= 〈[X,Y ], Z〉

so the metric is bi-invariant.
Let α be an integral curve of the left invariant vector field X. Condition

(9.51) implies that α′′ = ∇XX = 0 so α is a geodesic. Thus the one-parameter
groups are the geodesics through the identity, and all geodesics are left cosets
of one parameter groups. (This is the reason for the name exponential map in
Riemannian geometry.)

We compute the curvature of a bi-invariant metric by applying the definition
to left invariant vector fields:

RXY Z =
1
2
[[X,Y ], Z]− 1

4
[X, [Y, Z]] +

1
4
[Y, [X,Z]].

Jacobi’s identity implies the last two terms add up to − 1
4 [[X,Y ], Z] and so

RXY Z =
1
4
[[X,Y ], Z]. (9.52)
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In particular

〈RXY X,Y 〉 =
1
4
〈[[X,Y ], X], Y 〉 =

1
4
〈[X,Y ], [X,Y ]〉

so

K(X,Y ) =
1
4
||[X,Y ]||2

||X ∧ Y ||2
. (9.53)

For each X ∈ g the linear transformation of g consisting of bracketing on
the left by X is called ad X. So

ad X : g → g, ad X(V ) := [X,V ].

We can thus write our formula for the curvature as

RXV Y = −1
4
(ad Y )(ad X)V.

Now the Ricci curvature was defined as

Ric (X,Y ) = tr [V 7→ RXV Y ].

We thus see that for any bi-invariant metric, the Ricci curvature is always given
by

Ric = −1
4
B (9.54)

where B, the Killing form, is defined by

B(X,Y ) := tr (ad X)(ad Y ). (9.55)

The Killing form is symmetric, since tr (AB) = tr BA for any pair of linear
operators. It is also invariant. Indeed, let µ : g → g be any automorphism of
g, so µ([X,Y ]) = [µ(X), µ(Y )] for all X,Y ∈ g. We can read this equation as
saying

ad (µ(X))(µ(Y )) = µ(ad(X)(Y ))

or
ad (µ(X)) = µ ◦ ad Xµ−1.

Hence
ad (µ(X))ad (µ(Y )) = µ ◦ ad Xad Y µ−1.

Since trace is invariant under conjugation, it follows that

B(µ(X), µ(Y )) = B(X,Y ).

Applied to µ = exp(tad Z) and differentiating at t = 0 shows thatB([Z,X], Y )+
B(X, [Z, Y ]) = 0.

So the Killing form defines a bi-invariant scalar product on G. Of course it
need not, in general, be non-degenerate. For example, if the group is commuta-
tive, it vanishes identically. A group G is called semi-simple if its Killing form
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is non-degenerate. So on a semi-simple Lie group, we can always choose the
Killing form as the bi-invariant metric. For such a choice, our formula above
for the Ricci curvature then shows that the group manifold with this metric is
Einstein, i.e. the Ricci curvature is a multiple of the scalar product.

Suppose that the adjoint representation of G on g is irreducible. Then g can
not have two invariant non-degenerate scalar products unless one is a multiple
of the other. In this case, we can also conclude from our formula that the group
manifold is Einstein.

9.4.2 Homogeneous spaces.

Now suppose that B = G/H whereH is a subgroup with Lie algebra, h such that
h has an H invariant complementary subspace, m ⊂ g. In fact, for simplicity,
let us assume that g has a non-degenerate bi-invariant scalar product, whose
restriction to h is non-degenerate, and let m = h⊥. This defines a G invariant
metric on B, and the projection→ G/H = B is a submersion. The left invariant
horizontal vector fields are exactly the vector fields X ∈ m, and so

AXY =
1
2
V[X,Y ], X, Y ∈ m.

On the other hand, the fibers are cosets of H, hence totally geodesic since the
geodesics are one parameter subgroups. Hence T = 0. We can read (9.49)
backwards to determine KB(PB) as

KB(PXBYB
) = K(PXY ) +

3
4
||V[X,Y ]||2

||X ∧ Y ||2

or

KB(PXBYB
) =

1
4 ||H[X,Y ]||2 + ||V[X,Y ]||2

||X ∧ Y ||2
, X, Y ∈ m. (9.56)

See O’Neill pp. 313-15 for a slightly more general formulation of this result.
It follows from (9.2) that the geodesics emanating from the point H ∈ B =

G/H are just the curves (exp tX)H, X ∈ m.

9.4.3 Normal symmetric spaces.

Formula (9.56) simplifies if all brackets of basic vector fields are vertical. So we
assume that [m,m] ⊂ h. Then we get

KB(PXBYB
) =

||[X,Y ]||2

||X ∧ Y ||2
=
〈[[X,Y ], X], Y 〉
||X ∧ Y ||2

. (9.57)

For examples where this holds, we need to search for a Lie group G whose
Lie algebra g has an Ad-invariant non-degenerate scalar product, 〈 , 〉 and a
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decomposition g = h+m such that

h ⊥ m

[h, h] ⊂ h

[h,m] ⊂ m

[m,m] ⊂ h.

Let θ : g → g be the linear map determined by

θX = −X, X ∈ m, θU = U, U ∈ h.

Then

• θ is an isometry of 〈 , 〉

• θ[E,F ] = [θE, θF ] ∀E,F ∈ g

• θ2 =id.

Conversely, suppose we start with a θ satisfying these conditions. Since θ2 =
id, we can write g as the linear direct sum of the +1 and −1 eigenspaces of θ,
i.e. define h := {U |θ(U) = U} and m := {X|θ(X) = −X}. Since θ preserves
the scalar product, eigenspaces corresponding to different eigenvalues must be
orthogonal, and the bracket conditions on h and m follow automatically from
their definition.

One way of finding such a θ is to find a diffeomorphism σ : G→ G such that

• G has a bi-invariant metric which is also preserved by σ,

• σ is an automorphism of G, i.e. σ(ab) = σ(a)σ(b),

• σ2 = id.

If we have such a σ, then θ := dσe satisfies our requirements. Furthermore, the
set of fixed points of σ,

F := {a ∈ G|σ(a) = a}

is clearly a subgroup, which we could take as our subgroup, H. In fact, let F0

denote the connected component of the identity in F , and letH be any subgroup
satisfying F0 ⊂ H ⊂ F . Then M = G/H satisfies all our requirements. Such
a space is called a normal symmetric space. We construct a large collection of
examples of such spaces in the next two subsections.

9.4.4 Orthogonal groups.

We begin by constructing an explicit model for the spaces Rp,q and the orthog-
onal groups O(p, q). We let • denote the standard Euclidean (positive definite)
scalar product on Rn. For any matrix, M , square or rectangular, we let tM de-
note its transpose. For a given choice of (p, q) with p+q = n we let ε denote the
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diagonal matrix with +1 in the first p positions and −1 in the last q positions.
Then

〈u, v〉 := (εu) • v = u • (εv)

is a scalar product on Rn of type (p, q).
The condition that a matrix A belong to O(p, q) is then that

εAv •Aw = εv, w, ∀v, w ∈ Rn

which is the same as

(tAεAv) • w = (εv) • w ∀v, w ∈ Rn

which is the as the condition

tAεAv = εv ∀v ∈ Rn.

So tAεA = ε or
A ∈ O(p, q) ⇔ tA = εA−1ε. (9.58)

Now suppose that A = exp tM, M ∈ g := o(p, q). Then, since the ex-
ponential of the transpose of a matrix is the transpose of its exponential, we
have

exp stM = ε exp(−sM)ε = exp(−sεMε)

since ε−1 = ε. Differentiation at s = 0 gives

tM = −εMε (9.59)

as the condition for a matrix to belong to the Lie algebra o(p, q). If we write M
in “block” form

M =
(
a x
y b

)
then

tM =
(

ta ty
tx tb

)
and the condition to belong to o(p, q) is that

ta = −a, tb = −b, y = tx

so the most general matrix in o(p, q) has the form

M =
(

a x
tx b

)
, ta = −a, tb = −b. (9.60)

Consider the symmetric bilinear form X,Y 7→ tr XY , called the “trace
form”. It is clearly invariant under conjugation, hence, restricted to X,Y both
belonging to o(p, q), it is an invariant bilinear form. Let us show that is non-
degenerate. Indeed, suppose that

X =
(

a x
tx b

)
, Y =

(
c y
ty d

)
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are elements of o(p, q). Then

tr XY = tr
(
ac+ bd+ 2xty

)
.

this shows that the subalgebra h := o(p)⊕o(q) consisting of all “block diagonal”
matrices is orthogonal to the subspace m consisting of all matrices with zero
entries on the diagonal, i.e. of the form

M =
(

0 x
tx 0

)
.

For matrices of the latter form, we have

tr xtx =
∑
ij

x2
ij

and so is positive definite. On the other hand, since ta = −a and tb = −b we
have a 7→ tr a2 = −

∑
ij a

2
ij is negative definite, and similarly for b. Hence the

restriction of the trace form to h is negative definite.

9.4.5 Dual Grassmannians.

Suppose we consider the space Rp+q, the positive definite Euclidean space, with
orthogonal group O(p+q). Its Lie algebra consists of all anti-symmetric matrices
of size p+ q and the restriction of the trace form to o(p+ q) is negative definite.
So we can choose a positive definite invariant scalar product on g = o(p+ q) by
setting

〈X,Y 〉 := −1
2
tr XY.

Let ε be as in the preceding subsection, so ε is diagonal with p plus 1’s and q
minus 1’s on the diagonal. Notice that ε is itself an orthogonal transformation
(for the positive definite scalar product on Rp+q), and hence conjugation by ε
is an automorphism of O(p+ q) and also of SO(p+ q) the subgroup consisting
of orthogonal matrices with determinant one.

Let us take G = SO(p+ q) and σ to be conjugation by ε. So

σ

(
a b
c d

)
=
(

a −b
−c d

)
and hence the fixed point subgroup is F = S(O(p) × O(q)). We will take
H = SO(p)× S)(q). The subspace m consists of all matrices of the form

X =
(

0 −tx
x 0

)
and

tr X2 = −2tr txx
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so
〈X,X〉 = tr txx,

which was the reason for the 1
2 in our definition of 〈 , 〉.

Our formula for the sectional curvature of a normal symmetric space shows
that the sectional curvature of

G̃p,q

is non-negative. The special case p = 1 the quotient space is the q− dimensional
sphere,

G̃1,q = Sq

and the x occurring in the above formula is a column vector. Hence [X,Y ] where
Y corresponds to the column vector y is the operator = y ⊗t x− x⊗t y ∈ o(q),
and

||[X,Y ]||2 = ||X ∧ Y ||2,

proving that the unit sphere has constant curvature +1.

Next let G be the connected component of O(p, q), as described in the pre-
ceding subsection, and again take σ to be conjugation by ε. This time take

〈X,Y 〉 =
1
2
tr XY.

The -1 eigenspace, m of σ consists of all matrices of the form(
0 tx
x 0

)
and the restriction of 〈 , 〉 to m is positive definite, while the restriction to
H := SO(p) × SO(q) is negative definite. The corresponding symmetric space
G/H is denoted by G∗

pq. It has negative sectional curvature. In particular, the
case p = 1 is hyperbolic space, and the same computation as above shows that
it has constant sectional curvature equal to −1. This realizes hyperbolic space
as the space of timelike lines through the origin in a Lorentz space of one higher
dimension.

These two classes of symmetric spaces are dual in the following sense: Sup-
pose that (h,m) and (h∗,m∗) are the Lie algebra data of symmetric spaces G/H
and G∗/H∗. Suppose we have

• a Lie algebra isomorphism ` : h→ h∗ such that 〈`U, `V 〉∗ = −〈U, V 〉, ∀U, V ∈
h and

• a linear isometry i : m→ m∗ which reverses the bracket:

[iX, iY ]∗ = −[X,Y ] ∀X,Y ∈ m.
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Then it is immediate from our formula for the sectional curvature that

K∗(iX, iY ) = −K(X,Y )

for any X,Y ∈ m spanning a non-degenerate plane. We say that the symmetric
spaces G/H and G∗/H∗ are in duality.

In our case, H = SO(p) × SO(q) for both G̃p,q and G∗
p,q so we take ` =id.

We define i by

i :
(

0 −tx
x 0

)
7→
(

0 tx
x 0

)
.

It is easy to check that these satisfy our axioms and so G̃p,q and G∗
p,q are dual.

For example, the sphere and hyperbolic space are dual in this sense.

9.5 Schwarzschild as a warped product.

In the Schwarzschild model we define

P := {(t, r)|r > 0, r 6= 2M}

with metric

−hdt2 +
1
h
dr2, h = h(r) = 1− 2M

r
.

Then construct the warped product

P ×r S
2

where S2 is the ordinary unit sphere with its standard positive definite metric,
call it dσ2. So, following O’Neill’s conventions, the total metric is of type (3, 1)
(timelike = negative square length) given by

−hdt2 +
1
h
dr2 + r2dσ2.

We write P = PI ∪ PII where

PI = {(t, r)|r > 2M}, PII = {(t, r)|r < 2M}

and
N = PI ×r S

2, B = PII ×r S
2.

N is called the Schwarzschild exterior and B is called the black hole. In the
exterior, ∂t is timelike. In B, ∂t is spacelike and ∂r is timelike.

In either, the vector fields ∂t, ∂r are orthogonal and basic. So the base
is a surface with orthogonal coordinates. To apply the formulas for warped
products we need some preliminary computations on connections and curvature
of surfaces with orthogonal coordinates.
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9.5.1 Surfaces with orthogonal coordinates.

We consider a surface with coordinates u, v and metric

Edu2 +Gdv2

and set
ε1 := sgn E, ε2 := sgn G

and write
Edu2 +Gdv2 = ε1(θ1)2 + ε2(θ2)2

where
θ1 := edu, e :=

√
ε1E, e > 0,

and
θ2 := gdv, g :=

√
ε2G, g > 0.

The dual orthonormal frame field is given by

F1 =
1
e
∂u, F2 =

1
g
∂v.

The connection forms, ω1
2 and ω2

1 = −ε1ε2ω1
2 are defined by

ω1
2(X) = θ1(∇XF2), ω2

1(X) = θ2(∇XF1)

for any vector field, X, and are determined by the Cartan equations

dθ1 + ω1
2 ∧ θ2 = 0, dθ2 + ω2

1 ∧ θ1 = 0.

The curvature form is then given by dω1
2 . We find the connection forms by

straightforward computation:

dθ1 = evdv ∧ du = − ev

g du ∧ θ
2

dθ2 = gudu ∧ dv = − gu

e dv ∧ θ
1

where subscripts denote partial derivatives. Thus

ω1
2 =

ev

g
du− ε1ε2

gu

e
dv

satisfies both structure equations (with ω2
1 = −ε1ε2ω1

2) and is uniquely deter-
mined by them. We compute

dω1
2 =

(
ev

g

)
v

dv ∧ du− ε1ε2

(gu

e

)
u
du ∧ dv

= −
[(

ev

g

)
v

+ ε1ε2

(gu

e

)
u

]
du ∧ dv.
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This is the curvature form Ω1
2. In general, the Riemann curvature is related to

the connection form by

Rvw(Fj) = −
∑

Ωi
j(v, w)Fi.

In our case there is only one term in the sum and the sectional curvature, which
equals the Gauss curvature is given by

〈RF1F2F1, F2〉 = −〈RF1F2F2, F1〉
= 〈Ω1

2(F1, F2)F1, F1〉
= ε1Ω1

2(F1, F2)

=
ε1
eg

Ω1
2(∂u, ∂v)

= − ε1
eg

[(
ev

g

)
v

+ ε1ε2

(gu

e

)
u

]

= − 1
eg

[
ε1

(
ev

g

)
v

+ ε2

(gu

e

)
u

]
.

So

K = − 1
eg

[
ε1

(
ev

g

)
v

+ ε2

(gu

e

)
u

]
(9.61)

is the formula for the curvature of a surface in terms of orthogonal coordinates.

9.5.2 The Schwarzschild plane.

In the case of the Schwarzschild plane, P , we have eg = 1 so er/g = eer = ε1
1
2Er,

and the partial derivatives with respect to t vanish. The formula simplifies to
K = 1

2Err or

K =
2M
r3

. (9.62)

The connection form in the Schwarzchild plane is given by

ω1
2 =

M

r2
dt, ω2

1 =
M

r2
dt

by the same computation since ε1ε2 = −1. So

∇∂t
∂t = ∇∂t

(h
1
2F1)

= h
1
2∇∂tF1

= h
1
2ω2

1(∂t)F2

= h
1
2
M

r2
F2

=
Mh

r2
∂r.
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Similarly,

∇∂r∂t = ∂r(h
1
2 )F1

= h−
1
2
M

r2
F1

=
M

r2h
∂t,

and
∇∂r

∂r = ∂r(h−
1
2 )F2

= − M

r2h
∂r.

.
We will also need the Hessian of the function r. We have, by definition,

Hr(X,Y ) = 〈∇X(grad r), Y 〉.

Now
grad r = h∂r

and

∇∂th∂r = h∇∂t∂r

=
M

r2
∂t

∇∂r
h∂r = hr∂r + h∇∂r

∂r

=
M

r2
∂r.

Thus
Hr =

M

r2
〈 , 〉. (9.63)

9.5.3 Covariant derivatives.

We wish to apply the formulas for covariant derivatives in warped products to
the basic vector fields, ∂t, ∂r and to vector fields V,W tangent to the sphere
(considered as vector fields on N ∪B, the warped product.

The covariant derivatives of basic vector fields are the lifts of the correspond-
ing vector fields on the base, and so from the previous subsection we get

∇∂t
∂t =

Mh

r2
∂r (9.64)

∇∂t∂r = ∇∂r∂t

=
M

r2h
∂t (9.65)

∇∂r∂r = − M

r2h
∂r (9.66)
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From the formula

∇XV = ∇V X =
Xf

f
V

for a warped product we get, taking f = r,

∇∂t
V = ∇V ∂t = 0, (9.67)

and

∇∂r
V = ∇V ∂r =

1
r
V. (9.68)

Applying the formula for TV W for a warped product gives

TV W = −h
r
〈V,W 〉∂r (9.69)

since grad r = h∂r. This is the horizontal component of ∇V W . The vertical
component is just the lift of ∇S

V W , the covariant derivative on the sphere.

9.5.4 Schwarzschild curvature.

From formulas (9.39) and (9.40) for warped products and our formula (9.62) for
the curvature in the Schwarzschild plane we get

R∂t∂r
(∂t) = (−2Mh/r3)∂r (9.70)

R∂r∂t
(∂r) = (2M/r3h)∂t (9.71)

R∂t∂r
V = 0. (9.72)

From (9.36) and (9.63) we obtain

RXV Y = −RV XY = −M
r3
〈X,Y 〉V

so

R∂tV (∂t) = (Mh/r3)V (9.73)
R∂tV (∂r) = 0 (9.74)
R∂rV (∂t) = 0 (9.75)
R∂rV (∂r) = (M/hr3)V . (9.76)

We apply (9.34) to compute RUV . We have 〈grad h, grad h〉 = h2〈∂r, ∂r〉 = h
and the fiber over (t, r) is the sphere of radius r whose curvature is r−2. we get

RV WU = (2M/r3) (〈U, V 〉W − 〈U,W 〉V ) (9.77)
RV W (∂t) = 0 (9.78)
RV W (∂r) = 0 (9.79)
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To apply (9.38) we compute

∇∂t
grad r = h∇∂t

(∂r)

=
M

r2
∂t

∇∂r
(h∂r) = (2M/r2)∂r + h∇∂r

(∂r)

=
M

r2
∂r

so

R∂tV (W ) = R∂tW (V ) = (M/r3)〈V,W 〉∂t (9.80)
R∂rV (W ) = R∂rW (V ) = (M/r3)〈V,W 〉∂r. (9.81)

We show that the Ricci curvature vanishes by applying our formulas for the
Ricci curvature of a warped product, (9.41)-(9.43). For a surface, Ric(X,Y ) =
K〈X,Y 〉 and this is (2M/r3)〈X,Y 〉 for vectors in the Schwarzschild plane. On
the other hand, d = 2, f = r,Hf = (M/r2)〈 , 〉. This shows that Ric (X,Y ) =
0.

For vertical vectors, we have

RicF (V,W ) = r−2〈V,W 〉

while

∆r = C(Hessr)
= 2M/r2

〈grad f, grad f〉 = h so
f# = r2

showing that Ric(V,W ) = 0.

9.5.5 Cartan computation.

We have used the techniques of warped product to compute the Schwarzschild
connection and curvature. However, the Cartan method is more direct:
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ds2 = (θ0)2 − (θ1)2 − (θ2)2 − (θ3)2 where

θ0 =
√
hdt, h := 1− 2M

r

θ1 =
1√
h
dr

θ2 = rdϑ

θ3 = rSdφ

S = sinϑ
C = cosϑ

d
√
h =

1
2
√
h

(
2M
r2

)
dr

so

dθ0 =
M

r2
√
h
dr ∧ dt = − M

r2
√
h
θ0 ∧ θ1

dθ1 = 0

dθ2 = −
√
h

r
θ2 ∧ θ1

dθ3 = −
√
h

r
θ3 ∧ θ1 − C

rS
θ3 ∧ θ2

or

dθ = −ω ∧ θ

where

θ =


θ0

θ1

θ2

θ3

 ω =


0 M

r2
√

h
θ0 0 0

M
r2
√

h
θ0 0 −

√
h

r θ2 −
√

h
r θ3

0
√

h
r θ2 0 − C

Sr θ
3

0
√

h
r θ3 C

Sr θ
3 0

 .
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Now

M

r2
√
h
θ0 =

M

r2
dt so

d

(
M

r2
√
h
θ0
)

=
2M
r3

θ0 ∧ θ1

√
h

r
θ2 =

√
hdϑ so

d

(√
h

r
θ2

)
=

M

r2
√
h
dr ∧ dϑ =

M

r3
θ1 ∧ θ2

d

(√
h

r
θ3

)
= d

(√
h Sdφ

)
=

M

r2
√
h
dr ∧ Sdφ+

√
h Cdθ ∧ dφ

=
M

r3
θ1 ∧ θ3 +

C
√
h

Sr2
θ2 ∧ θ3

d

(
C

Sr
θ3
)

= d(Cdφ) = −Sdθ ∧ dφ

= − 1
r2
θ2 ∧ θ3.

This then gives the curvature matrix in this frame as

Ω := dω + θ ∧ ω =



0 2M
r3 θ

0 ∧ θ1 −M
r3 θ

0 ∧ θ2 −M
r3 θ

0 ∧ θ3

2M
r3 θ

0 ∧ θ1 0 −M
r3 θ

1 ∧ θ2 M
r3 θ

3 ∧ θ1

−M
r3 θ

0 ∧ θ2 M
r3 θ

1 ∧ θ2 0 2M
r3 θ

2 ∧ θ3

−M
r3 θ

0 ∧ θ3 −M
r3 θ

3 ∧ θ1 − 2M
r3 θ

2 ∧ θ3 0


.

The curvature tensor is given in terms of Ω as

Rvw(Ej) =
∑

Ωi
j(v, w)Ei

or
Ri

jk` = Ωi
j(Ek, E`).

Notice from the form of Ω given above, that Ri
jk` = 0 if j 6= k, `. Hence Rm

jm` = 0
if j 6= `. Looking at the columns we see that

∑
Rm

imi = ±(2I− I−I) = 0. Thus
the Schwarzschild metric is Ricci flat.

9.5.6 Petrov type.

The tensor Rab
cd is obtained from the tensor Rabcd = Ωa

b (Ec, Ed) by “raising ”
the second index. We want to consider this as the matrix of the operator [R]



210 CHAPTER 9. SUBMERSIONS.

relative to the basis Ei ∧Ej . If we use ij to stand for Ei ∧Ej and omit the zero
entries we see that the matrix of [R] is

[R] =

01 02 03 23 31 12
01 2M/r3

02 −M/r3

03 −M/r3

23 2M/r3

31 −M/r3

12 −M/r3

(9.82)

We can write this in block three by three form as

[R] =
(
A 0
0 A

)
where

A =

 2M/r3 0 0
0 −M/r3 0
0 0 −M/r3

 , .

On the other hand we have

?(E0 ∧ E1) = E2 ∧ E3

?(E0 ∧ E2) = E3 ∧ E1

?(E0 ∧ E3) = E1 ∧ E2 and
?2 = −id.

Thus the matrix of ? relative to the same basis is

[?] =
(

0 −I
I 0

)
where I is the three by three identity matrix. Clearly the operator given by
R on ∧2T (M) commutes with the star operator, as predicted by the general
theory for any Ricci flat curvature, and we see from the form of the matrix A
that it is of Petrov type D, with real eigenvalues 2M/r3,−M/r3 −M/r3.

9.5.7 Kerr-Schild form.

We will show that by making a change of variables that the metric is the sum of
a flat metric, and a multiple of the square of a linear differential form, α, where
||α||2 = 0 in the flat metric. The generalization of this construction will be
important in the case of rotating black holes.We make the change of variables
in two stages: Let

u = t+ T (r)

where T is any function of r (determined up to additive constant) such that

T ′ =
1
h
.
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Then
du = dt+

1
h
dr

so

hdt2 = hdu2 − 2dudr +
1
h
dr2

−hdt2 +
1
h
dr2 = −hdu2 + 2dudr

= −(du− dr)2 + dr2 +
2M
r
du2.

So if we set
x0 := u− r

this becomes
−d(x0)2 + dr2 − 2M

r

[
dx0 + dr

]2
.

The form dx0 + dr has square length zero in the flat metric

−d(x0)2 + dx2 + y2 + dz2, r2 = x2 + y2 + z2

and the Schwarzschild metric is given by

d(x0)2 + dr2 + r2dσ2 − 2M
r

[
dx0 + dr

]2
which is the desired Kerr-Schild form.

9.5.8 Isometries.

A vector fieldX is an infinitesimal isometry or a Killing field if its flow preserves
the metric. This equivalent to the assertion that

LX〈Y, Z〉 = 〈[X,Y ], Z〉+ 〈Y, [X,Z]〉 (9.83)

for all vector fields Y and Z. Now

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉

and
∇XY = ∇Y X + [X,Y ]

with a similar equation for Z. So (9.83) is equivalent to

〈∇Y X,Z〉+ 〈∇ZX,Y 〉 = 0. (9.84)

Let S be a submanifold, N a normal vector field to S, and Y, V,W tangential
vector fields to S, all extended to vector fields in the ambient manifold. Then
along S we have the decomposition

∇V Y = ∇S
V Y + II(V, Y )
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into tangential and normal components. So

0 = V 〈N,Y 〉
= 〈∇V N,Y 〉+ 〈N, II(V, Y )〉.

If the submanifold is totally geodesic, so II(V, Y ) ≡ 0, we see that

〈∇V N,Y 〉 = 0.

So for any vector field,

〈∇V X,W 〉 = 〈∇V tanX,W 〉

and hence if X is a Killing vector field and S a totally geodesic submanifold
then the tangential component of X along S is a Killing field for S.

The curvature of the Schwarzschild plane is 2M/r3. So any isometry must
preserve r since it preserves curvature. Hence it must be of the form

(t, r) 7→ (φ(t, r), r)

and so carries the vector fields

∂t 7→
∂φ

∂t
∂t; ∂r 7→

∂φ

∂r
∂t + ∂r.

Comparing the lengths of ∂r and its image we see that

∂φ

∂r
= 0

and comparing the lengths of ∂t and its image shows that

∂φ

∂t
= 1.

So the only isometries of the Schwarzschild plane are translations in t, i.e.(t, r) 7→
(t+ c, r).

Since the planes (at fixed spherical angle) are totally geodesic, this means
that the tangential component of any Killing vector, Y must be a multiple of
∂t. So the most general Killing field is of the form

Y = f∂t + V

where V is vertical and f is a function on S2. The claim is that f is a constant
and V does not depend on (t, r) and is a Killing vector for the sphere. In the
following, U denotes any vector field on the sphere lifted up to be a vertical
vector field, and u denotes the value of this vector field at some point q ∈ S2.
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We have

∇∂r∂t =
M

r2h
∂t

∇∂r
V =

1
r
V

∇∂r
U =

1
r
U so

∂r〈V,U〉 = 〈∇∂r
V,U〉+ 〈V,∇∂r

U〉

=
2
r
〈V,U〉.

Solving this equation for a fixed point q ∈ S2 and fixed tangent vector u at q,
we see that (at these fixed values)

〈V,U〉 = g(t)r2.

Now

∇∂t
U = 0 so

〈∇∂t
Y, U〉 = ∂t〈Y, U〉
∇UY = Uf∂t + (· · · )∂r + vertical

so
〈∇UY, ∂t〉 = −hUf so

〈∇∂t
Y,U〉+ 〈∇UY, ∂t〉 = 0 (Killing) implies

∂t〈V,U〉 = 0.

Again, fixing u, this gives

g′(t)r2 = h(r)Uf.

But no multiple of r2 can equal any multiple of h(r) = 1 − 2M
r unless both

multiples are zero. So g′ = 0 which implies that

〈V,U〉 = k(U)r2.

But the factor r2 is what we multiply the spherical metric by in the Schwarzschild
metric. Hence this last equation shows that the projection of V onto the sphere
does not depend on r or t.Then it must be a Killing field on S2. The condition
Uf ≡ 0 implies that f is a constant.

Conclusion: the connected group of isometries of the Schwarzschild solution
is

R× SO(3)

consisting of time translations and rotations of the sphere.
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9.6 Robertson Walker metrics.

These are warped products of an interval I ⊂ R (with a negative definite metric)
and a three dimensional spacelike manifold, S, of constant curvature. So S is
either the three sphere, Euclidean three dimensional space, or hyperbolic three
space. We use arc length, t as the coordinate on I, so the total metric has the
form

−dt2 + f2dσ2

where dσ2 is the constant curvature metric on S and f = f(t). We write

∂tf = f ′, grad f = −f ′∂t

so covariant derivatives are given by

∇∂t
(∂t) = 0 (9.85)

∇∂t
V = ∇V (∂t) = (f ′/f)V (9.86)

TV W = 〈V,W 〉(f ′/f)∂t (9.87)
∇V

V W = ∇F
V W. (9.88)

We have Hf (∂t, ∂t) := f ′′ and so

RV ∂t
∂t = (f ′′/f)V (9.89)

RV W∂t = 0 (9.90)
R∂tV W = (f ′′/f)〈V,W 〉∂t (9.91)
RUV W =

[
(f ′/f)2 + (k/f2)

]
[〈U,W 〉V − 〈V,W 〉U ]. (9.92)

where k = 1, 0 or −1 is the constant curvature of S. The fiber dimension is
d = 3 so

Ric (∂t, ∂t) = −3f ′′

f
(9.93)

while Ric (∂t, V ) = 0 as always in a warped product and

Ric (V,W ) =

(
2
(
f ′

f

)2

+ 2
k

f
+
f ′′

f

)
〈V,W 〉. (9.94)

Taking the contraction of the Ricci tensor gives the scalar curvature as

S = 6

((
f ′

f

)2

+
k

f2
+
f ′′

f

)
(9.95)

and hence the Einstein tensor T = Ric − 1
2S〈 , 〉 is given by

T (V,W ) = ℘〈V,W 〉, ℘ := −

[
2f ′′

f
+
(
f ′

f

)2

+
k

f2

]
.
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Also

T (∂t, ∂t) = −3f ′′

f
+

1
2
S = 3

(
f ′

f

)2

+
3k
f2

:= ρ.

With these definitions of ℘ and ρ we can write

T = (ρ+ ℘)dt⊗ dt+ ℘〈 , 〉. (9.96)

An energy momentum tensor of type

T = (ρ+ ℘)θ ⊗ θ + ℘g

where X is a forward timelike vector and

θ(·) = 〈X, ·〉

and where ρ and ℘ are functions, is called a perfect fluid for reasons explained
in O’Neill. The function ℘ is called the pressure. The fluid is called a dust if
℘ = 0. A Robertson Walker model which is a dust is called a Friedman model.

Let us compute the covariant divergence of the T given by (9.96). We com-
pute relative to a frame field whose first component is ∂t and whose last three
components U1, U2, U3 are therefor vertical. The covariant divergence is defined
to be ∑

εi∇Ei
T (Ei, ·).

In all situations, the covariant divergent of hg is just dh since ∇Eg = 0 and∑
dh(Ei)εi〈Ei, ·〉 = dh.

Hence we obtain, for div T , the expression

−(ρ′ + ℘′)dt+ (ρ+ ℘)
∑

εi∇Ei
(dt)(Ei)dt+ ℘′dt.

Now ∇∂t
(dt)(∂t) = dt(∇∂t

∂t) = 0, while

(∇Udt)(U) = −dt(∇UU) = −f
′

f

for any unit vector orthogonal to ∂t. Thus we obtain

−
[
ρ′ + 3(ρ+ ℘)

f ′

f

]
dt

for the covariant divergence.
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9.6.1 Cosmogeny and eschatology.

The function

H :=
f ′

f

is called the (Hubble) expansion rate for obvious reasons. The vanishing of the
covariant divergence of T yields the equation

ρ′ = −3(ρ+ ℘)H. (9.97)

if we go back to the definitions of ρ and ℘ we see that

−6
f ′′

f
= ρ+ 3℘.

Now in the known universe, ρ� ℘ > 0, so f ′′ < 0. So the graph of f is convex
down, i.e. it lies below its tangent line at any point. Let H0 = H(t0) denote
the Hubble constant at the present time, t0. The tangent line to the graph of f
at t0 has slope H0f(t0) and hence is given by the equation

`(t) = f(t0) +H0f(t0)(t− t0).

At t0 − H−1
0 the line ` crosses the axis. Since f > 0 by definition, this shows

that the model must fail at some time t∗ in the past, no more than H−1
0 units

of time ago. (The current estimates on Hubble’s constant give this value as
somewhere between ten and twenty billion years.) Notice also that if f ′(T ) < 0
at some time in the future then the convex downward property implies that the
model will also fail at some future time T ∗.

For a discussion of further details of the “big bang” and “big crunch” and
more specifically Friedman models where it is assumed that ℘ = 0 see O’Neill.



Chapter 10

Petrov types.

10.1 Algebraic properties of the curvature ten-
sor

The Riemann curvature tensor 〈RXY Z,W 〉 is anti-symmetric in X,Y and in
Z,W so can be thought of as a bilinear form on ∧2TMm at any point m of a
semi-Riemann manifold M . It is also invariant under simultaneous interchange
of X,Y with Z,W so this bilinear form is symmetric. In addition, it satisfies
the cyclicity condition

〈RXY Z,W 〉+ 〈RXZW,Y 〉+ 〈RXWY,Z〉 = 0.

We want to consider the algebraic possibilities and properties of this tensor,
so will replace TMx by a general vector space V with non-degenerate scalar
product and want to consider symmetric bilinear forms R on ∧2V which satisfy

R(v ∧ x, y ∧ z) +R(v ∧ y, z ∧ x) +R(v ∧ z, x ∧ y) = 0. (10.1)

For example, if V is four dimensional, then ∧2V is six dimensional, and
the space of symmetric bilinear forms on ∧2V is 21 dimensional. The cyclicity
condition in this case imposes no constraint on R if v is equal to (and hence
linearly dependent on) x, y or z. Hence there is only one equation on R implied
by (10.1) in this case. Thus the space of possible curvature tensors at any point
in a four dimensional semi-Riemannian manifold is 20 dimensional. The Ricci
tensor is the contraction (say with respect to the (1,3) position) of the Riemann
curvature:

Ric(R) = C13(R), Ric(R)(x, y) :=
∑

εaR(ea ∧ x, ea ∧ y)

where the sum is over any “orthonormal” basis. It is a symmetric tensor on
V . So we can think of Ric as a map from the space of possible curvatures to
possible Ricci curvatures. If we let

Curv(V ) ⊂ S2((∧2V )∗)

217
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denote the subspace of the space of symmetric bilinear forms on ∧2V satisfying
(10.1). Then

Ric : Curv(V ) → S2(V ∗).

Let us show that if dim V > 2 this map is surjective. Indeed, suppose that
A ∈ S2(V ∗). Let A ∧A denote the induced symmetric form on ∧2V so that

(A ∧A)(u ∧ v, x ∧ y) := A(v, x)A(w, y)−A(v, y)A(w, x).

Holding v fixed and cyclically summing over w, x, y we get

A(v, x)[A(w, y)−A(w, y)]+A(v, y)[A(x,w)−A(w, x)]+A(v, w)[A(y, x)−A(x, y)] = 0.

Thus A∧A satisfies (10.1). If A and B are two elements of S2(V ∗) we see that

A ∧B +B ∧A := (A+B) ∧ (A+B)−A ∧A−B ∧B

also satisfies (10.1). Let g ∈ S2(V ∗) denote the scalar product itself. We claim
that

Ric(g ∧ g) = (n− 1)g.

Indeed

Ric(g ∧ g)(v, w) =
∑

εa(〈ea, ea〉〈v, w〉 − 〈ea, w〉〈v, ea〉)

= n〈v, w〉 −
∑

εa〈v, ea〉〈ea, w〉
= (n− 1)〈v, w〉.

For any R ∈ Curv(V ) on ∧2(V ) define its “scalar curvature” S = S(R) by

S :=
∑

εa Ric(R)(ea, ea) = C(Ric(R)).

Also, for any A ∈ S2(V ∗), we have

C(A) :=
∑

εa Ric(R)(ea, ea)

so
S(R) = C(Ric(R)).

Then ∑
εa(A(ea, ea)〈v, w〉 −A(ea, v)〈ea, w〉) = C(A)〈v, w〉 −A(v, w)∑
εa(〈ea, ea〉A(v, w)−A(ea, w)〈ea, v〉) = (n− 1)A(v, w)

so
Ric (g ∧A+A ∧ g) = (n− 2)A+ C(A)g (10.2)

where n = dim V . Since Ric(g∧ g) = (n− 1)g this shows that Ric : Curv(V ) →
S2(V ∗) is surjection. We say that R is Ricci flat if Ric(R) = 0. Thus in four
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dimensions, the space of Ricci flat curvature tensors (at any point) is ten di-
mensional. The purpose of this chapter is to explain how the complex geometry
of spinors leads to a classification of all possible Ricci flat curvatures into five
types, the Petrov classification published in 1954 in the relatively obscure jour-
nal Sci. Nat. Kazan State University. In analyzing Petrov type D, Kerr was led
to his discovery of the rotating black hole solutions of the Einstein equations,
which generalize the Schwartzschild solution, in 1963. Unfortunately we will
not have time to study the remarkable properties of this solution. It would take
a whole semester.

Let us briefly go back to the general situation where dim V > 2. Let
R ∈ Curv(V ). Then W defined by

R = W +
1

n− 2
(g ∧ Ric(R) + Ric(R) ∧ g)− S(R)

(n− 1)(n− 2)
g ∧ g

satisfies
Ric(W ) = 0.

It is called the Weyl curvature (or the Weyl component of the Riemann curva-
ture.) It is, as was discovered by Hermann Weyl, a conformal invariant of the
metric. In three dimensions we have dim ∧2 = 3 and hence ker Ric = 0, there
are no Weyl tensors. They exist in four or more dimensions.

We not turn to the special properties of the curvature tensors in general
relativity. In what follows, all vector spaces and tensor products are over the
complex numbers unless otherwise specified. All vector spaces are assumed to
be finite dimensional.

10.2 Linear and antilinear maps.

A map φ : U → V between vector spaces is called antilinear if

φ(a1u1 + a2u2) = a1φ(u1) + a2φ(u2) ∀u1, U2 ∈ U, a1, a2 ∈ C.

The composition of two antilinear maps is linear, and the composition of a linear
map with an antilinear map (in either order) is antilinear.

We let U# denote the space of all antilinear functions on U , that is the set
of all antilinear maps φ : U → C. As usual, we let U∗, the complex dual space
of U denote the space of linear maps of U → C. We have a canonical linear
isomorphism

U → (U#)#

where u ∈ U is sent to the antilinear function of f ∈ U# given by

f 7→ f(u).

Notice that
f(au) = af(u) = a · f(u),
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so this map of U → U## is linear. It is injective and hence bijective since our
spaces are finite dimensional.

We define
U := U∗#

so U consists of antilinear functions on U∗.
Given a linear function, `, on an vector space, W , we get an antilinear

function by composing with the standard conjugation on the complex numbers,
so

` = ◦ `, : C → C

or
`(w) = `(w) ∀w ∈W.

Also, starting with an antilinear function we produce a linear function by com-
position with complex conjugation. Thus, for example, the most general linear
function on U∗ is of the form

` 7→ `(u) u ∈ U,

and hence the most general antilinear function on U∗ is of the form

` 7→ `(u).

But if we write ` = m = ◦m where m ∈ U#, then, considered as a function of
m this is the assignment

m 7→ m(u)

which is a linear function of m. Thus we have a canonical identification

U := U∗# = U#∗.

Also
U = (U#∗)∗# = U.

We have an antilinear map u 7→ u, U → U given by composition with conju-
gation on C as above, where we think of U as U∗∗. So

u(`) = `(u), ∀` ∈ U∗

or
u(m) = m(u), m = ` ∈ U#.

So
u(m) = m(u) = `(u) = u∗∗(`)

and thus
u = u

under the identification of U with U .
We also have

U ⊗ V = U ⊗ V
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as a canonical identification, with

u⊗ v = u⊗ v

as the map
: U ⊗ V → U ⊗ V .

If b is a bilinear form on U , then we can think of b as a bilinear form on U
according to the rule

b(u, v) := b(u, v).

Indeed,

b(au, v) = b(au, v)
= b(au, v)
= ab(u, v)
= ab(u, v),

and similarly for b(u, av).
If b is symmetric or antisymmetric then so is b.

10.3 Complex conjugation and real forms.

A complex conjugation of a complex vector space, V , is an antilinear map of V
to itself whose square is the identity. Suppose that

† : v 7→ v†

is such a complex conjugation. Then the set of vectors fixed by †,

{v| v† = v}

is a real vector space. It is called the real form of the complex vector space,
V , relative to the conjugation, †. We denote this vector space by V†, real or
simply by Vreal when † is understood. If v ∈ Vreal then iv satisfies the equation
w† = −w (and we might want to call such vectors “imaginary”). Every vector
u ∈ V can be written in a unique way as

u = v + iw, v, w ∈ Vreal,

indeed
v =

1
2
(v + v†), w =

−i
2

(v − v†).

Familiar examples are: V is the set of all n × n complex matrices and †
is conjugate transpose. The real vectors are then the self adjoint matrices.
Another example is to start with a real vector space, E, and then complexify it
by tensoring with the complex numbers:

V = E ⊗R C



222 CHAPTER 10. PETROV TYPES.

with
(x⊗R c)† = x⊗R c.

The corresponding real subspace is then identified with our starting space, E.
The above remarks about every vector being written as u = v + iw shows that
any complex vector space with conjugation can by identified with this example,
i.e. as V = E ⊗R C where E = Vreal.

We shall be interested in two other types of examples. Suppose we start
with a vector space U and construct V = U ⊗ U . Define complex conjugation
by

(u⊗ v)† := v ⊗ u.

So
† = s ◦ ⊗

where
s : U ⊗ U 7→ U ⊗ U

switches the order of the factors. The real subspace is spanned by the elements
of the form u⊗ u.

A second example is V = U ⊕ U ≡ U ⊕ U with

(x+ y)† = y + x.

The real subspace consists of all x + x and hence can be identified with U as
a real vector space. That is we can consider U as a vector space over the real
numbers (forgetting about multiplication by i), and this can be identified as a
real vector space with the real subspace of U + U . For example, suppose that
g is a symmetric (complex) bilinear form on U . We then obtain a complex
symmetric bilinear form, g on U and hence a complex symmetric bilinear form,
g ⊕ g on U ⊕ U by declaring U and U to be orthogonal:

(g ⊕ g)(x+ u, y + v) := g(x, y) + g(u, v).

This restricts to a real bilinear form on the real subspace:

(g ⊕ g)(x+ x, y + y) = 2Re g(x, y).

So under the identification of the real subspace of U ⊕ U with U , the metric
g ⊕ g becomes identified with the real quadratic form 2Re g. Suppose that g
is non-degenerate, and we choose a (complex) orthonormal basis, e1, . . . , en

for g. So g(ei, ei) = 1 and g(ei, ej) = 0 for i 6= j. This is always pos-
sible for non-degenerate symmetric forms on complex vector spaces. Then
e1, . . . , en, ie1, . . . , ien is an orthogonal basis for U as a real vector space with
scalar product Re g and Re g(iek, iek) = −1. So the metric 2Re g is of type
(n, n) on the space U thought of as a 2n dimensional real vector space.
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10.4 Structures on tensor products.

If U and V are (complex) vector spaces, then

∧2(U ⊗ V ) = S2(U)⊗ ∧2(V )⊕ ∧2(U)⊗ S2(V ).

Exterior multiplication is given by

(u1 ⊗ v1) ∧ (u2 ⊗ v2) = u1u2 ⊗ v1 ∧ v2 + u1 ∧ u2 ⊗ v1v2

where u1u2 denotes the product of u1 and u2 in the symmetric algebra, and
similarly for v1v2. We will want to apply this construction to the case V = U .

If U has an antisymmetric bilinear form, ω, and V has an antisymmetric
form, σ, then this induces a symmetric bilinear form on U ⊗ V by

〈u1 ⊗ v1, u2 ⊗ v2〉 = ω(u1, u2)σ(v1, v2).

We will want to apply this construction to V = U and σ = ω.
The symmetric bilinear induced on U ⊗ V in turn induces a scalar product

on ∧2(U ⊗ V ) = S2(U)⊗ ∧2(V )⊕ ∧2(U)⊗ S2(V ) according to the usual rule

〈(u1 ⊗ v1) ∧ (u2 ⊗ v2), (u3 ⊗ v3) ∧ (u4 ⊗ v4)〉 =

= 〈u1 ⊗ v1, u3 ⊗ v3〉〈u2 ⊗ v2, u4 ⊗ v4〉 − 〈u1 ⊗ v1, u4 ⊗ v4〉〈u2 ⊗ v2, u3 ⊗ v3〉
= ω(u1, u3)ω(u2, u4)σ(v1, v3)σ(v2, v4)− ω(u1, u4)ω(u1, u3)σ(v1, v4)σ(v2, v3).

We can interpret this scalar product as follows, put scalar products on the spaces
S2(U) and ∧2(U) according to the rules

〈u1u2, u3u4〉 :=
1
2

(ω(u1, u3)ω(u2, u4) + ω(u1, u4)ω(u2, u3))

and
〈u1 ∧ u2, u3 ∧ u4〉 := ω(u1, u3)ω(u2, u4)− ω(u1, u4)ω(u2, u3).

Make similar definitions for S2(V ),∧2(V ). Put the tensor product scalar prod-
uct on S2(U)⊗ ∧2(V ) and ∧2(U)⊗ S2(V ). Declare the spaces S2(U)⊗ ∧2(V )
and ∧2(U)⊗ S2(V ) in the direct sum,

∧2(U ⊗ V ) = S2(U)⊗ ∧2(V )⊕ ∧2(U)⊗ S2(V ).

This direct sum scalar product then coincides with the scalar product described
above. In particular, when V = U and σ = ω, and when we think of conjugation
as mapping S2(U)⊗∧2U) 7→ ∧2(U)⊗ S2(U), we are in the situation described
above, of g ⊕ g, where g is the tensor product metric on S2(U)⊗ ∧2(U).
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10.5 Spinors and Minkowski space.

Let U be a two dimensional complex vector space with an antisymmetric non-
degenerate bilinear form, ω. Then we get a symmetric bilinear form on U ⊗ U .
Let us check that the restriction of this symmetric form to the real subspace is
real, and is of type (1, 3). To see this, let u be any non-zero element of U , and
let v be some other vector with

ω(u, v) =
1√
2
.

Then u⊗ w is a null vector of U ⊗ U for any w, since ω(u, u) = 0. Then

〈(u⊗ u+ v ⊗ v, u⊗ u+ v ⊗ v〉 = 2ω(u, v)2 = 1.

Also

〈u⊗ u− v ⊗ v, u⊗ u− v ⊗ v〉 = −1
〈u⊗ v + v ⊗ u, u⊗ v + v ⊗ u〉 = −1

〈i(u⊗ v − v ⊗ u), i(u⊗ v − v ⊗ u)〉 = −1

and the vectors u⊗ u+ v ⊗ v, u⊗ u− v ⊗ v, u⊗ v + v ⊗ u, i(u⊗ v − v ⊗ u) are
mutually orthogonal, and span the real subspace.

Let α := u ∧ v. So α can be characterized as the unique element of ∧2U
satisfying ω(α) = 1

2 . Then

u⊗ u ∧ (u⊗ v + v ⊗ u) = u2 ⊗ α+ α⊗ u2.

This element of ∧2T , where T is the real subspace of U⊗U is the wedge product
of a null vector, u⊗u and a spacelike vector orthogonal to the null vector. Hence
it corresponds to a “null plane” containing the null vector u⊗ u.

Thus each non-zero u ∈ U determines a null vector, u ⊗ u, and a “null
plane”,Qu, corresponding to the decomposable element u2⊗α+α⊗ u2. Multi-
plying u by a phase factor, eiθ multiplies u by e−iθ and hence does not change
the null vector u⊗u. But it changes the null plane since u2 7→ e2iθu2. Geometri-
cally, this amounts to replacing v by e−iθv and so rotates the vector u⊗v+v⊗u
by 2θ. So Qeiθu is obtained from Qu by rotation through angle 2θ.

We can compute the star operator in terms of the orthonormal basis con-
structed above from u and v, and find by direct computation that ?(u2 ⊗ α) =
±iu2 ⊗ α (the same choice of sign for all u). Since the sign of the star oper-
ator is determined by the orientation, we can choose the orientation so that
?(u2 ⊗ α) = iu2 ⊗ α ∀u ∈ U , and hence the decomposition

∧2(U ⊗ U) = S2(U)⊗ ∧2(U)⊕ ∧2(U)⊗ S2(U)

is the decomposition into the +i and −i eigenspaces of (the complexification of)
star on ∧2(U ⊗ U) = ∧2T ⊗R C.
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10.6 Traceless curvatures.

If we use α and α to identify ∧2(U) and ∧2(U) with C, we then can write

∧2(U ⊗ U)) = S2(U)⊕ S2(U),

as the decomposition into the ±i eigenvalues of the star operator. Then

S2(∧2(U ⊗ U))− = S2(S2(U))⊕ S2(S2(U))

is the −1 eigenspace of the induced action of ? on S2(∧2(U ⊗U). The complex
conjugation is the obvious one coming from the complex conjugation U → U .
Thus we may identify the space of (real) −1 eigenvectors of ? on S2(∧2(T )) with
S2(S2(U)) considered as a real vector space.

The space S2(S2(U)) is six dimensional (over the complex numbers). It has
an invariant five dimensional subspace, S4(U), the space of quartic polynomials
in elements of U . We can also describe this subspace as follows: we can use the
quadratic form on S2(U) and on S2(S2(U)) to define a map

µ : S2(S2(U)) → End S2(U),

〈µ(t)s1, s2〉 = 〈t, s1 · s2〉, t ∈ S2(S2(U)), s1, s2 ∈ S2(U),

and where s1 · s2 ∈ S2(S2(U)). This identifies S2(S2(U)) with the space of all
symmetric operators on S2(U), symmetric with respect to the quadratic form on
S2(U). The map t 7→ tr µ(t) is a linear form which is invariantly defined. Since
Sl(U) acts irreducibly on S4(U), the restriction of this linear form to S4(U)
must be zero, so we can think of S4(U) as consisting of traceless operators. Up
to an inessential scalar, we can consider the restriction of µ to S4(U), call it ν,
characterized by

〈ν(t)s1, s2〉 = 〈t, s1s2〉,

where s1s2 ∈ S4(U) is the product of s1 and s2 in the symmetric algebra, and
the scalar product on the right is the scalar product in S4(U).

10.7 The polynomial algebra.

It will be convenient to deal with the entire symmetric algebra, S := S(U),
where Sk denote the homogeneous polynomials of degree k. For any u 6= 0 ∈ U ,
let us now choose w such that ω(u,w) = 1, and define the derivation on S

ι(u) : Sk → Sk−1

by
ι(u)z = ω(u, z) ∀z ∈ U

which defines it on generators and hence determines it on all of S. The com-
mutator of any two derivations is a derivation, and the commutator [i(u), i(u′)]
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vanishes on S1 and hence on S for any pair of vectors u and u′. Thus all
derivations ι(u) commute, and hence u 7→ ι(u) extends to a homomorphism

ι : S → End S.

This allow us to extend ω to a bilinear form on S by

〈s, t〉 := [i(s)t]0

where the subscript 0 denotes the component in degree zero. So the spaces Sk

and S` are orthogonal with respect to this bilinear form, and the restriction to
Sk × Sk is symmetric when k is even, and antisymmetric when k is odd.

We can write the operator ν(t), t ∈ S4 as

〈ν(t)s1, s2〉 = ι(t)(s1s2), s1, s2 ∈ S2.

Since every quartic homogeneous polynomial in two variables is a product of four
linear polynomials, t = u1u2u3u4, we can use this formula and the derivation
property to describe the operator ν(t).

10.8 Petrov types.

For example, suppose that t = u4, i.e. all four factors are identical. Then
ι(u4)ukw4−k = 0, for k 6= 0 and ι(u)4w4 = 12. Hence

ν(u4)u2 = ν(u4)uw = 0, ν(u4)w2 = 6u2.

Thus for any non zero u ∈ U , the operator ν(u4) is a rank one nilpotent operator
with image Cu2.

Suppose that three of the factors of t are the same, and the fourth linearly
independent. So we may assume that t = u3w for u,w ∈ U with ω(u,w) = 1.
Then

ι(u3w)ukwn−k = 0, k 6= 1

and
ι(u3w)uw3 = −1.

So
ν(u3w)u2 = 0, ν(u3w)uw ∈ Cu2, ν(u3w)w2 ∈ Cuw.

Thus ν(u3w) has kernel Cu2 and image the plane spanned by u2 and uw in S2.
The image of this plane is the kernel, so ν(u3w) is a two step nilpotent operator.

Next consider the case where u1 = u2, u3 = u4, u2 6= u3, all not zero. The
non-zero value of ω(u1, u3) is an invariant. But we can always multiply our
element t by a scalar factor, to arrange that this value is one. So up to scalar
multiple we have t = u2w2 for 0 6= u ∈ U, ω(u,w) = 1. Then

ι(u2w2)ukwk = 0, k 6= 2, ι(u2w2)u2w2 = 4.
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Our current choice of the normalization of the scalar product on S2 yields

〈u2, w2〉 = 〈w2, u2〉 = 2, 〈uw, uw〉 = −1

all other scalar products equal zero for the basis u2, uw,w2 of S2. Hence follows
that ι(u2w2) is diagonizable with eigenvalues −4, 2, 2:

ν(u2w2)u2 = 2u2, ν(u2w2)w2 = 2w2, ν(u2w2)uw = −4uw.

Suppose that exactly two factors are equal. We can assume that the two
equal factors are u. Multiplying by scalars if necessary, we can arrange that
ω(u, u3) = ω(u, u4) = 1. So u3 = w + au, u4 = w + bu, a 6= b. Replacing w by
w − 1

2 (a+ b)u we may write

t = u2(w + ru)(w − ru) = u2w2 − r2u4, r 6= 0,

where we have r = 1
2 (a − b). Now the semisimple element ν(u2w2) commutes

with the rank one nilpotent element ν(u4) since

ν(u2w2) =

 2 0 0
0 −4 0
0 0 2

 , ν(u4) =

 0 0 6
0 0 0
0 0 0


in terms of the basis u2, uw,w2 of S2(U) In fact, the form of these two matrices
shows that the operator ν(u2w2 − r2u4) is not diagonizable.

Finally, the generic case of four distinct linear factors corresponds to the
generic case of three distinct eigenvalues. We thus have the various Petrov
types for non-zero elements:

name # linear factors structure of ν(t)

I 4 distinct distinct eigenvalues, diagonalizable
II 3 distinct 2λ,−λ,−λ, non-diagonalizable
D u1 = u2 6= u3 = u4 2λ,−λ,−λ, diagonalizable
III u1 = u2 = u3 6= u4 nilpotent, rank 2
N u1 = u2 = u3 = u4 nilpotent, rank one

10.9 Principal null directions.

We have identified the space S2 = S2(U) with the +i eigenspace of ? acting on
∧2T ⊗C. The map α 7→ α− i ? α is a real linear identification of ∧2T with this
eigenspace, under which multiplication by i is pulled back to the star operator.
So an element α corresponds to a null vector in S2 if and only if it satisfies
α ∧ α = 0 and 〈α, α〉 = 0, and so determines a null plane which is degenerate
under the restriction of the Lorentz scalar product. Such a null plane contains
a unique null line. We can describe this null plane and null line in terms of
S2 as follows. The null elements of S2 are those elements which are squares of
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linear elements. Indeed, every element of S2 can be factored into the product
of two linear factors, say as uv, and if v is not a multiple of u then 〈uv, uv〉 6= 0.
So the null bivectors in ∧2T correspond to elements of the form u2, and the
corresponding null line in T is the line spanned by u⊗ u. If u2 satisfies

〈ν(t)u2, u2〉 = 0

then α is called a principal null bivector and its corresponding null line is called
a principal null line, and a non-zero vector in a principal null line is called a
principal null vector. If α = u2 then we say that u is a principal spinor.

Projectively, the two quadric curves 〈α, α〉 = 0 and 〈ν(t)α, α〉 = 0 will
intersect at four points, but these points may coalesce to give multiple points
of intersection.

The multiplicity, m, of a principal null vector ` = u⊗ u is defined to be

• m = 1 if u2 is not an eigenvector of ν(t),

• m = 2 if u2 is an eigenvector of ν(t) with non-zero eigenvalue,

• m = 3 if ν(t)u2 = 0, dim ker ν(t) = 1,

• m = 4 if ν(t)u2 = 0 and dim ker ν(t) = 2.

The condition for u to be a principal null spinor can be written as

ι(t)u4 = 0.

If we write t as a product of linear factors, t = u1u2u3u3 we see that this is
equivalent to saying that u = ui (up to a constant factor), i.e. that u be a
factor of t. If we now go back to the previous section and examine each of
the normal forms we constructed for each type, we see that the factorization
properties defining the type of t also give the multiplicities of the principal null
vectors. So type I has four distinct principal null vectors each of multiplicity 1,
type II has one principal null vector of multiplicity 2 and two of multiplicity 1,
type D has two principal null spinors each of multiplicity two, type III has one
of multiplicity 3 and one of multiplicity 1, and type N has one principal null
vector of multiplicity 4. In symbols:

I ⇔ (1, 1, 1, 1)
II ⇔ (2, 1, 1)
D ⇔ (2, 2)

III ⇔ (3, 1)
N ⇔ 4.

Here is another description of the multiplicity of a null vector, k = u ⊗ u.
The element u2 corresponds to a bivector α = k ∧ x where x is some spacelike
vector perpendicular to k. To say that k is principal is the same as to say that
g(ν(t)α, α) = 0 where g is the complex scalar product pulled back to ∧2T . The
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real part of g is just the original scalar product so 〈ν(t)α, α〉 = 0. Since we can
multiply u and α by an arbitrary phase factor, the condition of being principal
is that

〈ν(t)k ∧ x, k ∧ x〉 = 0 ∀x ⊥ k.

Writing
〈ν(t)k ∧ x, k ∧ x〉 = 〈Rkxk, x〉

and then polarizing, we see that this is the same as saying that

〈Rkxk, y〉 = 0 ∀x, y ⊥ k. (10.3)

We claim that the null vector is principal with multiplicity ≥ 2 if and only if

〈Rkxk, y〉 = 0, ∀x ⊥ k and ∀y. (10.4)

Proof. Suppose that k = u ⊗ u is a factor of order at least two in t. This
happens if and only if ι(t)u3v = ι(t)u4 = 0. This is the same as saying that
ν(t)u2 is orthogonal to the complex two dimensional space u2⊥ relative to the
complex metric. This complex two dimensional space corresponds to a real four
dimensional space, the orthogonal complement of the two dimensional subspace
of ∧2T spanned by k ∧ x = u2 and k ∧ z = iu2. Here x and z are spacelike
vectors orthogonal to k and to each other as above. So u is a repeated factor of
t if and only if

〈[R](k ∧ x), γ〉 = 0

for all γ in this four dimensional subspace of ∧2T and similarly for z. The
four dimensional space in question is spanned by the three dimensional space of
elements of the form k∧y, y ∈ T and the element x∧z. In particular, applied to
elements of the form x∧ y we get condition (10.4) for the x we have chosen and
also for x replaced by z. It is automatic with x replaced with k since Rkk = 0.
This proves that (10.4) holds if u is a repeated factor.

To prove the converse, we must show that [R](k ∧ x) is orthogonal to the
four dimensional subspace of ∧2T spanned by all k ∧ y and x ∧ z. Condition
(10.4) guarantees the orthogonality for the elements of the form k ∧ y. So we
must prove that

〈Rkxx, z〉 = 0.

This will follow from the Ricci flatness condition. Indeed, choose a null vector
` orthogonal to k, x and z with 〈k, `〉 = 0. Then

0 = Ric[R](k, z) =
∑
ij

gij〈Rkyi
z, yj)

as yi, yj range over the elements k, `, x, z. This sum reduces to

−〈Rk`z, k) + 〈Rkxz, x〉

all other terms vanishing. The first term vanishes by (10.4) and this implies the
vanishing of the second.
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10.10 Kerr-Schild metrics.

We want to use (10.4) to conclude that if a Ricci flat metric is obtained from a
flat metric by adding the square of a null form to a flat metric, then the tracefree
curvature has a repeated factor. More precisely, if the null form is α, and the
corresponding vector field is N , then we will show that this repeated factor is
u where u⊗ u = N . For this we recall the following facts,

• A necessary condition for the new metric to be Ricci flat is that

∇NN = φN

for some function φ. Thus the integral curves of N are null geodesics in
the old (and new) metric but with a possibly non-affine parametrization.

• . The new affine connection is differs from the old affine connection by
adding the a tensor A ∈ T ⊗S2T ∗ which can be expressed in terms of the
null form. That is, the new connection is

∇XY +AXY

where ∇ is the old connection and we can write down a formula for AXY
involving the null form and its covariant derivatives. In particular,

AN = φ N ⊗ α (10.5)

i.e.
AN (X) = φα(X)N.

Also
α(A··) = φα⊗ α

i.e.
α(AXY ) = φα(X)α(Y ). (10.6)

• If the affine connection is modified by the addition of a tensor A, then the
new curvature differs from the old curvature by

R′
XY = RXY + [AX , AY ] + (∇A)(X,Y )− (∇A)(Y,X).

Here
(∇A)(X,Y ) ∈ Hom (T, T )

is defined by

(∇A)(X,Y )Z = ∇X(AY Z)−A∇XY Z −AY∇XZ

where ∇ is the connection relative to the old metric.
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In our case the old curvature is zero and we are interested in computing

〈R′
NXN,Y 〉 = −α(RNXY ).

We have ANN = 0 and ANAXN = ANANX = 0 so the bracket term makes no
contribution. Since N is a null vector field, we have ∇XN ⊥ N and so

A∇XNN = AN∇XN = 0

for any X, and ANN ≡ 0 so ∇X(ANN) = 0 for any X. So we are left with the
formula

α(R′
NXY ) = α((∇NA)XY ).

Now
α(∇NA) = ∇N (α(A))− (∇Nα)(A) = −(∇Nφ+ φ2)α⊗ α

or
α(RNXY ) = −(∇Nφ+ φ2)α(X)α(Y ). (10.7)

In particular, if X ⊥ N so α(X) = 0, the preceding expression vanishes for any
Y proving that N is a principal null vector of multiplicity at least two. QED
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Chapter 11

Star.

11.1 Definition of the star operator.

We start with a finite dimensional vector space V over the real numbers which
carries two additional pieces of structure: an orientation and a non-degenerate
scalar product. The scalar product, 〈 , 〉 determines a scalar product on each
of the spaces ∧kV which is fixed by the requirement that it take on the values

〈x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk〉 = det (〈xi, yj〉)

on decomposable elements. This scalar product is non-degenerate. Indeed,
starting from an “orthonormal” basis e1, . . . , en of V , the basis ei1∧· · ·∧eik

, i1 <
· · · < ik is an “orthonormal” basis of ∧k where

〈ei1 ∧ · · · ∧ eik
, ei1 ∧ · · · ∧ eik

〉 = (−1)r

where r is the number of the ij with 〈eij
, eij

〉 = −1.
In particular, there are exactly two elements in the one dimensional space

∧nV, n = dim V which satisfy

〈υ, υ〉 = ±1.

Here the ±1 is determined by the signature (p, q) ( p pluses and q minuses) of
the scalar product:

〈υ, υ〉 = (−1)q.

An orientation of a vector space amounts to choosing one of the two half
lines (rays) of non-zero elements in ∧nV . Hence for an oriented vector space
with non-degenerate scalar product there is a well defined unique basis element

υ ∈ ∧nV 〈υ, υ〉 = (−1)q.

Wedge product always gives a bilinear map from ∧kV ×∧n−kV → ∧nV But
now we have a distinguished basis element for the one dimensional space, ∧nV .

233
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The wedge product allows us to assign to each element of λ ∈ ∧kV the linear
function, `λ on ∧n−kV given by

λ ∧ ω = `λ(ω)υ ∀ ω ∈ ∧n−kV.

But since the induced scalar product on ∧n−kV is non-degenerate, any linear
function ` is given as `(ω) = 〈τ, ω〉 for a unique τ = τ(`). So there is a unique
element

?λ ∈ ∧n−kV

determined by
λ ∧ ω = 〈?λ, ω〉υ. (11.1)

This is our convention with regard to the star operator. In short, we have
defined a linear map

? : ∧kV → ∧n−kV

for each 0 ≤ k ≤ n which is determined by (11.1).
Let us choose an orthonormal basis of V as above, but being sure to choose

our orthonormal basis to be oriented, which means that

υ = e1 ∧ · · · en.

Let I = (i1, . . . , ik) be a k− subset of {1, . . . , n} with its elements arranged in
order, i1 < · · · < ik so that the

eI := ei1 ∧ · · · ∧ eik

form an “orthonormal” basis of ∧kV . Let Ic denote the complementary set of
I ⊂ {1, . . . , n} with its elements arranged in increasing order. Thus eIc is one
of the basis elements, {eJ} where J ranges over all (n−k) subsets of {1, . . . , n}.
We have

eI ∧ eJ = 0 if J 6= Ic

while
eI ∧ eIc = (−1)πυ

where (−1)π is the sign of the permutation required to bring the entries in
eI ∧ eIc back to increasing order. Thus

?eI = (−1)π+r(Ic)eIc (11.2)

where (−1)π+r := (−1)π(−1)r and

r(J) is the number of j ∈ J with 〈ej , ej〉 = −1,

i.e.
(−1)r(J) = 〈eJ , eJ〉. (11.3)

We should explicate the general definition of the star operator for the ex-
treme cases k = 0 and k = n. We have ∧0V = R for any vector space V ,
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and the scalar product on R is the standard one assigning to each real number
its square. Taking the number 1 as a basis for R thought of as a one dimen-
sional vector space over itself, this means that 〈1, 1〉 = 1. Wedge product by
an element of ∧0V = R is just ordinary multiplication by of a vector by a real
number. So,

υ ∧ 1 = 1 ∧ υ = υ

and the definition
υ ∧ 1 = 〈?υ, 1〉υ

requires that
?υ = 1 (11.4)

no matter what the signature of the scalar product on V is. On the other hand,
?1 = ±υ. We determine the sign from

1 ∧ υ = υ = 〈?1, υ〉υ

so
?1 = 〈υ, υ〉υ = (−1)qυ (11.5)

in accordance with our general rule.
Applying ? twice gives a linear map of ∧kV into itself for each k. We claim

that
?2 = (−1)k(n−k)+q id. (11.6)

Indeed, since both sides are linear operators it suffices to verify this equation on
basis elements, e.g. on elements of the form eI , and by relabeling if necessary
we may assume, without loss of generality, that I = {1, . . . , k}. Then

?(e1 ∧ · · · ∧ ek) = (−1)r(Ic)ek+1 ∧ · · · ∧ en,

while
?(ek+1 ∧ · · · ∧ en) = (−1)k(n−k)+r(I)e1 ∧ · · · ∧ ek

since there are n− k transpositions needed to bring each of the ei, i ≤ k, past
ek+1 ∧ · · · ∧ en. Since r(I) + r(Ic) = q, (11.6) follows.

11.2 Does ? : ∧kV → ∧n−kV determine the met-
ric?

The star operator depends on the metric and on the orientation. Clearly, chang-
ing the orientation changes the sign of the star operator.

Let us discuss the question of when the star operator determines the scalar
product. We claim, as a preliminary, that it follows from the definition that

λ ∧ ?ω = (−1)q〈λ, ω〉υ ∀ λ, ω ∈ ∧k (11.7)

for any 0 ≤ k ≤ n. Indeed, we have really already verified this formula for the
case k = 0 or k = n. For any intermediate k, we observe that both sides are
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bilinear in λ and ω, so it suffices to verify this equation on basis elements, i.e
when λ = eI and ω = eK where I and K are k−subsets of {1, . . . , n}. If K 6= I
then 〈eI , eK〉 = 0, while Kc and I have at least one element in common, so
eI ∧ ?eK = 0. Hence both sides equal zero. So we must only check the equation
for I = K, and without loss of generality we may assume (by relabeling the
indices) that I = {1, 2, . . . , k}. Then the left hand side of (11.7) is

(−1)r(Ic)υ

while the right hand side is (−1)q+r(I)υ by (11.2). Since q = r(I) + r(Ic) the
result follows.

One might think that (11.7) implies that ? acting on ∧kV, k 6= 0, n deter-
mines the scalar product, but this is not quite true. Here is the simplest (and
very important) counterexample. Take V = R2 with the standard positive def-
inite scalar product and k = 1. So ? : ∧1V = V → V . In terms of an oriented
orthonormal basis we have ?e1 = e2, ?e2 = −e1, thus ? is (counterclockwise)
rotation through ninety degrees. Any (non-zero) multiple of the standard scalar
product will determine the same notion of angle, and hence the same ? operator.
Thus, in two dimensions, the ? operator only determines the metric up to scale.

The reason for the breakdown in the argument is that the υ occurring on the
right hand side of (11.7) depends on the choice of metric. It is clear from (11.7)
that the star operator acting on ∧kV determines the induced scalar product on
∧kV up to scale. Indeed, let 〈 , 〉′ denote a second scalar product on V . Let υ′

denote the element of ∧nV determined by the scalar product 〈 , 〉′, so

υ′ = aυ

for some non-zero constant, a > 0. Finally, for purposes of the present argument,
let us use more precise notation and denote the scalar products induced on ∧kV
by 〈 , 〉k and 〈 , 〉′k. Then (11.7) implies that

〈 , 〉′k =
1
a
〈 , 〉k. (11.8)

For example, suppose that we know that the original scalar products on V differ
by a positive scalar factor, say

〈 , 〉′ = c〈 , 〉, c > 0.

Then
〈 , 〉′k = ck〈 , 〉

while
υ′ =

1
cn/2

υ

since 〈υ, υ〉′n = cn〈υ, υ〉. Hence the fact the the star operators are the same on
∧kV implies that c = 1 for any k other than k = n

2 . This was exactly the point
of breakdown in our two dimensional example where n = 2, k = 1.
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In general, if 〈 , 〉 is positive definite, and 〈 , 〉′ is any other non-degenerate
scalar product, then the principal axis theorem (the diagonalization theorem for
symmetric matrices) from linear algebra says that we can find a basis e1, . . . , en

which is orthonormal for 〈 , 〉 and orthogonal with respect to 〈 , 〉′ with

〈ei, ei〉′ = si, si 6= 0.

Then

〈eI , eI〉′ = si1 · · · sik
〈eI , eI〉, I = {i1, . . . , ik}.

The only way that (11.8) can hold for a given 0 < k < n is for all the si to be
equal. Let s denote this common value of the si. Then a = |s|−n/2 and we can
conclude that s = ±1 if k 6= n/2 and in fact that s = 1 if, in addition, k is odd.

I don’t know how to deal the case of a general (non-definite) scalar product
in so straightforward a manner. Perhaps you can work this out. But let me deal
with the case of importance to us, a Lorentzian metric on a four dimensional
space, so a metric of signature (1, 3) or (3, 1). For k = 1, we know from the above
discussion that the star operator determines the metric completely. The case
k = 3 reduces to the case k = 1 since ?2 = (−1)3·1+1id =id in this degree. The
only remaining case is k = 2, where we know that ? only determines 〈 , 〉2 up to
a scalar. So the best we can hope for is that ? : ∧2V → ∧2V determines 〈 , 〉 up
to a scalar multiple. The following proof (in the form of exercises) involves facts
that will be useful to us later on when we study curvature properties of black
holes, so we will need them anyway. What we are trying to prove is that (in our
situation of a Minkowski metric in four dimensions) the equality 〈 , 〉′2 = b〈 , 〉2
for some b 6= 0 implies that 〈 , 〉′ = s〈 , 〉 for some s 6= 0:

1. Show that the metric 〈 , 〉2 induced on ∧2V from the Minkowski metric
〈 , 〉 on V has signature (3, 3). (It doesn’t matter for this result whether we use
signature (1, 3) or or (3, 1) for our Minkowski metric.)

2. Let u, v ∈ V . Show that 〈u ∧ v, u ∧ v〉2 = 0 if and only if the plane, P{u,v}
spanned by u and v is degenerate,i.e. the restriction of 〈 , 〉 to P{u,v} is singular.
This means that {0} 6= P⊥

{u,v} ∩ P{u,v}. Now P⊥
{u,v} 6= P{u,v} since there are no

totally null planes in V . So P⊥
{u,v} ∩ P{u,v} is a line consisting of null vectors,

that is of vectors n satisfying 〈n, n〉 = 0. Show that all other vectors in P{u,v}
are spacelike. That is, if w ∈ P{u,v}, w 6∈ P⊥

{u,v} then 〈w,w〉 < 0 if we use the
signature (1, 3) or 〈w,w〉 > 0 if we use the signature (3, 1). Conversely, if n is
any non-zero nullvector and w is any spacelike vector perpendicular to n then
the plane spanned by n and w is a degenerate plane so that 〈u ∧ v, u ∧ v〉2 = 0
for any pair of vectors spanning this plane.
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Notice that if u′, v′ is some other pair of vectors spanning the plane P{u,v},
then u′∧v′ = bu∧v for some scalar b 6= 0. Conversely, if u′∧v′ = bu∧v, b 6= 0,
then u′, v′ span the same plane, P{u,v} as do u and v. So every line of null
decomposable bivectors (i.e. a line of the form {ru ∧ v}), 〈u ∧ v, u ∧ v〉2 = 0
determines a line of of null vectors, {cn}. Conversely, if we start with the line
{cn} of null vectors, let

Qn := n⊥

be the orthogonal complement of n. It is a three dimensional subspace of V
containing n; all elements of Qn not lying on the line {cn} being spacelike. The
choice of any spacelike vector, w, in Qn, say with |〈w,w〉| = 1 then determines
a degenerate plane containing n and lying in Qn. We thus get a whole “circle”
of null planes P with

{0} ⊂ {cn} ⊂ P ⊂ Qn ⊂ V.

In general, a chain of increasing subspaces is called a “flag” in the mathematical
literature. If the dimensions increase by one at each step it is called a “complete
flag”. What we have here is that each u ∧ v with 〈u ∧ v, u ∧ v〉2 = 0 determines
a special kind of complete flag, starting with a line of null vectors. (Penrose
uses the following picturesque language: he calls {cn} the flagpole about which
the plane P rotates.) All this is overkill for our present purpose, but will be
needed later on. What we do conclude for our current needs is that the cone
of null bivectors, {ω ∈ ∧2V |〈ω, ω〉2 = 0} determines the cone of null vectors,
N := {w ∈ V |〈w,w〉 = 0}. So we can conclude the proof with the following:

3. Let W be any vector space with a non-degenerate scalar product 〈 , 〉 of
type (p, q) with p 6= 0, q 6= 0 and let N := {w ∈W |〈w,w〉 = 0} be its null cone.
If 〈 , 〉′ is any other (non degenerate) scalar product with the same null cone
then 〈 , 〉′ = s〈 , 〉 for some non-zero scalar, s.

So we now know that in our four dimensional Minkowski space, a knowledge
of ? : ∧2V → ∧2V determines the metric up to scale. Here are some more
special facts we will need later.

4. Show that ? : ∧2V → ∧2V is self adjoint relative to 〈 , 〉2, i.e.

〈?λ, ω〉 = 〈λ, ?ω〉 ∀ λ, ω ∈ ∧2V.

The next three problems relate to the discussion in Chapter IX. It follows
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from our general formula that ? : ∧2V → ∧2V satisfies ?2 = − id. This means
that ? : ∧2V → ∧2V has eigenvalues i and −i. In order to have actual eigen-
vectors, we must complexify. So we introduce the space

∧2VC := ∧2V ⊗C.

An element of ∧2VC is an expression of the form λ+iω, λ, ω ∈ ∧2V . Any linear
operator on ∧2V automatically extends to become a complex linear operator on
∧2VC. For example ?(λ+ iω) := ?λ+ i ? ω. Similarly, every real bilinear form
on ∧2V extends to a complex bilinear form on ∧2VC. For example, 〈 , 〉 = 〈 , 〉2
(we will now revert to the imprecise notation and drop the subscript 2) extends
as

〈λ+ iω, τ + iρ〉 := 〈λ, τ〉+ i〈ω, τ〉+ i〈λ, ρ〉 − 〈ω, ρ〉.

The subspaces

∧2V +
C := {λ− i ? λ} ∧2 V −

C := {λ+ i ? λ} λ ∈ ∧2V

are complex linear subspaces which are the +i and −i eigenspaces of ? on ∧2VC.
They are each of three complex dimensions and

∧2VC = ∧2V +
C ⊕ ∧2V −

C .

In the physics literature they have the unfortunate names of the space of “self
dual” and “anti-self dual” bivectors.

5. Show that these two subspaces are orthogonal under (the complex extension
of) 〈 , 〉.

The (real) vector space ∧2V has dimension 6. Hence the space of symmetric
two tensors over ∧2V , the space S2(∧2V ) has dimension 6 · 7/2 = 21. The
operator ? : ∧2V → ∧2V induces an operator (shall we also denote it by ??) of
S2(∧2V ) → S2(∧2V ). The eigenvalues of this induced operator will be all pos-
sible products of two factors of either i or −i, so the eigenvalues of the induced
operator ? : S2(∧2V ) → S2(∧2V ) are ±1. The corresponding eigenspaces are
now real.

6. Show that the dimension of the −1 eigenspace is 12 and the dimension
of the +1 eigenspace is 9. (Hint: The dimensions of real eigenspaces do not
change if we complexify and then consider dimensions over the complex numbers
with the same real eigenvalues of the complexified operator. Describe the space
S2(W1⊕W2), the symmetric two tensors over a direct sum of two vector spaces.)
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The reason that the preceding problem will be of importance to us is that
the curvature tensor R at any point of a Lorentzian manifold can be thought of
as lying in S2(∧2V ) where V = TM∗

x , the cotangent space at a point. Actually,
one of the Bianchi identities (the cyclic sum condition) imposes one additional
algebraic constraint on the curvature tensor so that R lies in a 20 dimensional
subspace of the 21 dimensional space S2(∧2V ). The Einstein condition in free
space will turn out to further restrict R to lie in an eleven dimensional subspace
of the twelve dimensional space of −1 eigenvectors, and the more stringent
condition of being Ricci flat will restrict R to lie in a ten dimensional subspace
of this eleven dimensional space. We will spend a good bit of time studying this
ten dimensional space.

11.3 The star operator on forms.

If M is an oriented semi-Rimannian manifold, we can consider the star operator
associated to each cotangent space. Thus, operating pointwise, we get a star
operator mapping k−forms into (n− k)forms, where n = dim M :

? : Ωk(M) → Ωn−k(M).

Many of the important equations of physics have simple expressions in terms
of the star operator on forms. the purpose of the rest of these exercises is to
describe some of them. In fact, all of the equations we shall write down will be
for various star operators of flat space of two, three and four dimensions. But
the general formulation goes over unchanged for curved spaces or spacetimes.

11.3.1 For R2.

We take as our orthonormal frame of forms to be dx, dy and the orientation two
form to be υ := dx ∧ dy. Then

?dx = dy, ?dy = −dx

as we have already seen.

7. For any pair of smooth real valued functions u and v, let

ω := udx− vdy.

Write out the pair of equations

d ? ω = 0, dω = 0 (11.9)

as a system of two partial differential equations for u and v. (We will find later
on that Maxwell’s equations in the absence of sources has exactly this same
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expression, except that for Maxwell’s equations ω is a two form on Minkowski
space instead of being a one form on the plane.) If we allow complex valued
forms, write f = u+ iv and dz = dx+ idy then the above pair of equations can
be written as

d[fdz] = 0.

It then follows from Stokes’ theorem that the integral of fdz around the bound-
ary of any region where f is defined (and smooth) must be zero. This is known
as the Cauchy integral theorem. Notice that

fdz = ω + i ? ω

is the anti-self dual form corresponding to ω in the terminology of the preceding
section.

11.3.2 For R3.

We have the orthonormal coframe field dx, dy, dz, with υ = dx ∧ dy ∧ dz, so
?1 = υ,

?dx = dy ∧ dz
?dy = −dx ∧ dz
?dz = dx ∧ dy

with
?2 = 1

in all degrees. Let

∆ :=
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
.

Let

θ = adx+ bdy + cdz

Ω = Adx ∧ dy +Bdx ∧ dz + Cdy ∧ dz.

8. Show that

?d ? dθ − d ? d ? θ = −(∆a)dx− (∆b)dy − (∆c)dz (11.10)

and

− ? d ? dΩ + d ? d ?Ω = −(∆A)dx∧ dy− (∆B)dx∧ dz − (∆C)dy ∧ dz. (11.11)



242 CHAPTER 11. STAR.

11.3.3 For R1,3.

We will choose the metric to be of type (1, 3) so that we have the “orthonormal”
coframe field cdt, dx, dy, dz with

〈cdt, cdt〉 = 1

and
〈dx, dx〉 = 〈dy, dy〉 = 〈dz, dz〉 = −1.

We will choose
υ = cdt ∧ dx ∧ dy ∧ dz.

This fixes the star operator. But I am faced with an awkward notational prob-
lem in the next section when we will discuss the Maxwell equations and the
relativistic London equations: We will want to deal with the star operator on
R3 and R1,3 simultaneously, in fact in the same equation. I could use a sub-
script, say ?3 to denote the three dimensional star operator and ?4 to denote
the four dimensional star operator. This would clutter up the equations. So I
have opted to keep the symbol ? for the star operator in three dimensions and
for the purpose of the rest of this section only, use a different symbol, ♣, for the
star operator in four dimensions. So

♣(cdt ∧ dx ∧ dy ∧ dz) = 1, ♣1 = −cdt ∧ dx ∧ dy ∧ dz

while

♣cdt = −dx ∧ dy ∧ dz
♣dx = −cdt ∧ dy ∧ dz
♣dy = cdt ∧ dx ∧ dz
♣dz = −cdt ∧ dx ∧ dy

which we can summarize as

♣cdt = − ? 1
♣θ = −cdt ∧ ?θ for
θ = adx+ bdy + cdz

and

♣cdt ∧ dx = dy ∧ dz
♣cdt ∧ dy = −dx ∧ dz
♣cdt ∧ dz = dx ∧ dy
♣dx ∧ dy = −cdt ∧ dz
♣dx ∧ dz = cdt ∧ dy
♣dy ∧ dz = −cdt ∧ dx.
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Notice that the last three equations follow from the preceding three because
♣2 = −id as a map on two forms in R1,3. We can summarize these last six
equations as

♣(cdt ∧ θ) = ?θ, ♣Ω = −cdt ∧ ?Ω.

I want to make it clear that in these equations θ = adx + bdy + cdz where the
functions a, b, and c can depend on all four variables, t, x, y and z. Similarly Ω
is a linear combination of dx ∧ dy, dx ∧ dz and dx ∧ dz whose coefficients can
depend on all four variables. So we may think of θ and Ω as forms on three
space which depend on time.

We have ♣2 = id on one forms and on three forms which checks with

♣(cdt ∧ dx ∧ dy) = −dz

or, more generally,
♣(cdt ∧ Ω) = − ? Ω.

11.4 Electromagnetism.

We begin with two regimes in which we solely use the star operator on R3.
Then we will pass to the full relativistic theory.

11.4.1 Electrostatics.

The objects of the theory are:

a linear differential form, E, called the electric field strength. A point charge
e experiences the force eE. The integral of E along any path gives the voltage
drop along that path. The units of E are

voltage
length

=
energy

charge · length
.

The dielectric displacement, D, which is a two form. In principle, we could
measure D(v1, v2) where v1, v2 ∈ TR3

x ∼ R3 are a pair of vectors as follows:
construct a parallel-plate capacitor whose plates are metal parallelograms de-
termined by hv1, hv2 where h is a small positive number. Place these plates
with the corner at x touch them together, then separate them. They acquire
charges ±Q. The orientation of R3 picks out one of these two plates which we
call the top plate. Then

D(v1, v2) = lim
h→0

charge on top plate
h2

.

The units of D are
charge
area

.



244 CHAPTER 11. STAR.

The charge density which is a three form, ρ. (We identify densities with
three forms since we have an orientation.)

The key equations in the theory are:

dE = 0

which, in a simply connected region implies that that E = −du for some func-
tion, u called the potential.

The integral ofD over the boundary surface of some three dimensional region
is the total charge in the region Gauss’ law:∫

∂U

D =
∫

U

ρ

which, by Stokes, can be written differentially as

dD = ρ.

(I will use units which absorb the traditional 4π into ρ.)
Finally there is a constituitive equation relating E and D. In an isotropic

medium it is given by
D = ε ? E

where ε is called the dielectric factor. In a homogeneous medium it is a con-
stant, called the dielectric constant. In particular, the dielectric constant of the
vacuum is denoted by ε0. The units of ε0 are

charge
area

× charge · length
energy

=
(charge)2

energy · length
.

The laws of electrostatics, since they involve the star operator, determine the
three dimensional Euclidean geometry of space.

11.4.2 Magnetoquasistatics.

In this regime, it is assumed that there are no static charges, so ρ = 0, and that
Maxwell’s term ∂D/∂t can be ignored; energy is stored in the magnetic field
rather than in capacitors.

The fundamental objects are:

a one form E giving the electric force field. The force on a charge e is eE,as
before.

a two form B giving the magnetic induction or the magnetic flux density.
The force on a current element I (which is a vector) is i(I)B where i denotes
interior product.
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The current flux, J which is two form [measured in (amps)/(area)].

a one form, H called the magnetic excitation or the magnetic field. The
integral of H over the boundary, C of a surface S is equal to the flux of current
through the surface. This is Ampere’s law.∫

C

H =
∫

S

J (11.12)

Faraday’s law of induction says that

− d

dt

∫
S

B =
∫

C

E. (11.13)

By Stokes’ theorem, the differential form of Ampere’s law is

dH = J, (11.14)

and of Faraday’s law is
∂B

∂t
= −dE. (11.15)

Faraday’s law implies that the time derivative of dB vanishes. But in fact
we have the stronger assertion (Hertz’s law)

dB = 0. (11.16)

Equations (11.14, (11.15), and (11.16) are the structural laws of electrody-
namics in the magnetoquasistatic approximation. We must supplement them
by constituitive equations. One of these is

B = µ ? H, (11.17)

where ? denotes the star operator in three dimensions.
According to Ampere’s law, H has units

charge
time · length

while according to Faraday’s law B has units

energy · time
charge · (length)2

so that µ has units
energy · (time)2

(charge)2 · length
.

Thus ε · µ has units
(time)2

(length)2
= (velocity)−2
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and it was Maxwell’s great discovery, the foundation stone of all that has hap-
pened since in physics, that

1
ε0µ0

= c2

where c is the speed of light. (This discussion is a bit premature in our present
regime of quasimagnetostatics where D plays no role.)

We need one more constituitive equation, to relate the current to the elec-
tromagnetic field. In ordinary conductivity, one mimics the equation

V = RI

for a resistor in a network by Ohm’s law:

J = σ ? E. (11.18)

According to the Drude theory (as modified by Sommerfeld) the charge carri-
ers are free electrons and σ can be determined semi-empirically from a model
involving the mean free time between collisions as a parameter. Notice that
in ordinary conductivity the charge carrier is something external to the elec-
tromagnetic field, and σ is not regarded as a fundamental constant of nature
(like c, say) but is an empirical parameter to be derived from another theory,
say statistical mechanics. In fact, Drude proposed the theory of the free elec-
tron gas in 1900, some three years after the discovery of the electron, by J.J.
Thompson, and it had a major success in explaining the law of Wiedemann and
Franz, relating thermal conductivity to electrical conductivity. However, if you
look at the lengthy article on conductivity in the 1911 edition of the Encyclo-
pedia Britannica, written by J.J. Thompson himself, you will find no mention
of electrons in the section on conductivity in solids. The reason is that Drude’s
theory gave absolutely the wrong answer for the specific heat of metals, and
this was only rectified in 1925 in the brilliant paper by Sommerfeld where he
replaces Maxwell Boltzmann statistics by the Fermi-Dirac statistics. All this
is explained in a solid state physics course. I repeat my main point - σ is not
a fundamental constant and the source of J is external to the electromagentic
fields.

11.4.3 The London equations.

In the superconducting domain, it is natural to mimic a network inductor which
satisfies the equation

V = L
dI

dt
.

So the Londons (1933) introduced the equation

E = Λ ?
∂J

∂t
, (11.19)
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where Λ is an empirical parameter similar to the conductance, but the analogue
of inductance of a circuit element. Equation (11.19) is known as the first London
equation. If we assume that Λ is a constant, we have

∂

∂t
? dH = ?

∂J

∂t
=

1
Λ
E.

Setting H = µ−1 ? B, applying d, and using (11.15) we get

∂

∂t

(
d ? d ? B +

µ

Λ
B
)

= 0. (11.20)

From this one can deduce that an applied external field will not penetrate, but
not the full Meissner effect expelling all magnetic fields in any superconduct-
ing region. Here is a sample argument about the non-penetration of imposed
magnetic fields into a superconducting domain: Since dB = 0 we can write

d ? d ? B = (d ? d ?+ ? d ? d)B = −4B,

where4 is the usual three dimensional Laplacian applied to the coefficients of B
(using(11.11)). Suppose we have a situation which is invariant under translation
in the x and z direction. For example an infinite slab of width 2a with sides at
y = ±a parallel to the y = 0 plane. Then assuming the solution also invariant,
(11.20) becomes (

µ

Λ
− ∂2

∂y2

)
∂B

∂t
= 0.

If we assume symmetry with respect to y = 0 in the problem, we get

∂B

∂t
= C(t) cosh

y

λ
,

where

λ =

√
Λ
µ

is called the penetration depth of the superconducting material. It is typically
of order .1µm. Suppose we impose some time dependent external field which
takes on the the value

b(t)dx ∧ dy,

for example, on the surface of the slab. Continuity then gives

∂B

∂t
= b′(t)

cosh y/λ
cosh a/λ

.

The quotient on the right decays exponentially with penetration y/λ. So
externally applied magnetic fields do not penetrate, in the sense that the time
derivative of the magnetic flux vanishes exponentially within a few multiples of
the penetration depth. But the full Meissner effect says that all magnetic fields
in the interior are expelled.
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So the Londons proposed strengthening (11.20) by requiring that the expres-
sion in parenthesis in (11.20) be actually zero, instead of merely assuming that
it is a constant. Since d ? B = µdH = µJ (assuming that µ is a constant) we
get

d ? J = − 1
Λ
B. (11.21)

Equation (11.21) is known as the second London equation.

11.4.4 The London equations in relativistic form.

We can write the two London equations in relativistic form, by letting

j = −J ∧ dt

be the three form representing the current in space time. In general, we write

j := ρ− J ∧ dt (11.22)

as the three form in space time giving the relativistic “current”, but in the
quasistatic regime ρ = 0.

We have
♣j =

1
c
? J,

a one form on space time with no dt component (under our assumption of the
absence of static charge in our space time splitting). So

cd(♣j) = dspace ? J −
∂ ? J

∂t
∧ dt,

where the d on the left is the full d operator on space time. (From now on, until
the end of this handout, we will be in space-time, and so use d to denote the full
d operator in four dimensions, and use dspace to denote the three dimensional d
operator.)

We recall that in the relativistic treatment of Maxwell’s equations, the elec-
tric field and the magnetic induction are combined to give the electromagnetic
field

F = B + E ∧ dt

so that Faraday’s law, (11.15), and Hertz’s law, (11.16) are combined into the
single equation,

dF = 0, (11.23)

known as the first Maxwell equation. We see that the two London equations
can also be combined to give

d♣cΛj = −F, (11.24)

which implies (11.23). This suggests that superconductivity involves modifying
Maxwell’s equations, in contrast to ordinary conductivity which is supplemen-
tary to Maxwell’s equations.
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11.4.5 Maxwell’s equations.

To see the nature of this modification, we recall the second Maxwell equation
which involves the two form

G = D −H ∧ dt

where D is the “dielectric displacement”, as above. Recall that

dspaceD

gives the density of charge according to Gauss’ law. The second Maxwell equa-
tion combines Gauss’ law and Maxwell’s modification of Ampere’s law into the
single equation

dG = j, (11.25)

where the three current, j is given by (11.22). The product (εµ)−1/2 has the
units of velocity, as we have seen, and let us us assume that we are in the
vacuum or in a medium for which that this velocity, is c, the same value as the
vacuum. So using the corresponding Lorentz metric on space time to define our
♣ operator the combined constituitive relations can be written as

G = − 1
cµ
♣F,

or using units where c = 1 more simply as

G = − 1
µ
♣F. (11.26)

From now on, we will use “natural” units in which c = 1 and in which energy
and mass have units (length)−1.

11.4.6 Comparing Maxwell and London.

The material in this subsection, especially the comments at the end, might be
acceptable in the mathematics department. You should be warned that they
do not reflect the currently accepted physical theories of superconductivity, and
hence might encounter some trouble in the physics department.

In classical electromagnetic theory, j is regarded as a source term in the
sense that one introduces a one form, A, the four potential, with

F = −dA

and Maxwell’s equations become the variational equations for the Lagrangian
with Lagrange density

LM (A, j) =
1
2
dA ∧ ♣dA− µA ∧ j. (11.27)
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This means the following: LM (A, j) is a four form on R1,3 and we can imagine
the “function”

LM (A, j)“ := ”
∫
R1,3

LM (A, j).

It is of course not defined because the integral need not converge. But if C is
any smooth one form with compact support, the variation

d(LM )(A,j)[C] :=
d

ds
LM (A+ sC, j)|s=0

is well defined, and the condition that this variation vanish for all such C gives
Maxwell’s equations.

9. Show that these variational equations do indeed give Maxwell’s equations.
Use d(C ∧♣A) = dC ∧♣dA−C ∧ d♣dA and the fact that τ ∧♣ω = ω ∧♣τ for
two forms.

In particular, one has gauge invariance: A is only determined up to the
addition of a closed one form, and the Maxwell equations become

d♣dA = µj. (11.28)

For the London equations, if we apply ♣ to (11.24) and use (11.26) we get

♣d♣j =
µ

Λ
G,

and so by the second Maxwell equation, (11.25) we have

d♣d♣j =
1
λ2
j. (11.29)

We no longer restrict j by requiring the absence of stationary charge, but do
observe that “conservation of charge”. i.e. dj = 0 is a consequence of (11.29).

If we set
♣Λj = A, (11.30)

we see that the Maxwell Lagrange density (11.27) is modified to become the
“Proca” Lagrange density

LL(A) =
1
2

(
dA ∧ ♣dA− 1

λ2
A ∧ ♣A

)
. (11.31)

10.Verify this.
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A number of remarks are in order:
1. The London equations have no gauge freedom.
2. The Maxwell equations in free space (that is with j = 0) are conformally

invariant. This is a general property of the star operator on middle degrees, in
our case from ∧2 to ∧2, as we have seen. But the London equations involve the
star operator from ∧1 to ∧3 and hence depend on, and determine, the actual
metric and not just on the conformal class. This is to be expected in that the
Meissner effect involves the penetration depth, λ.

3. Since the units of λ are length, the units of 1/λ2 are (mass)2 as is to be
expected. So the London modification of Maxwell’s equations can be expressed
as the addition of a masslike term to the massless photons. In fact, substituting
a plane wave with four momentum k directly into (11.29) shows that k must lie
on the mass shell k2 = 1/λ2. 4. Since the Maxwell equations are the mass zero
limit of the Proca equations, one might say that the London equations represent
the more generic situation from the mathematical point of view. Perhaps the
“true world” is always superconducting and we exist in some limiting case where
the photon can be considered to have mass zero.

5. On the other hand, if one starts from a firm belief in gauge theories, then
one would regard the mass acquisition as the result of spontaneous symmetry
breaking via the Higgs mechanism. In the standard treatment one gets the Higgs
field as the spin zero field given by a Cooper pair. But since the electrons are
not needed for charge transport, as no external source term occurs in (11.29),
one might imagine an entirely different origin for the Higgs field. Do we need
electrons for superconductivity? We don’t use them to give mass to quarks or
leptons in the standard model.


